<--- Back to Details
First PageDocument Content
Geometry / Mathematics / Projective geometry / Incidence geometry / Algebraic geometry / Euclidean plane geometry / Projective plane / Design of experiments / Combinatorial design / Finite geometry
Date: 2007-02-07 05:14:23
Geometry
Mathematics
Projective geometry
Incidence geometry
Algebraic geometry
Euclidean plane geometry
Projective plane
Design of experiments
Combinatorial design
Finite geometry

Generating Finite Projective Planes from Non-Paratopic Latin Squares 0 1 1

Add to Reading List

Source URL: www.math.kun.nl

Download Document from Source Website

File Size: 758,85 KB

Share Document on Facebook

Similar Documents

Available online at www.sciencedirect.com ScienceDirect Two is better than one; toward a rational design of combinatorial therapy Sheng-hong Chen and Galit Lahav

DocID: 1uE1d - View Document

In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design

DocID: 1u55o - View Document

Genetic Programming and Evolvable Machines  ~Call for Papers~  Special Issue on Automated Design and Adaptation of Heuristics for   Scheduling and Combinatorial Optimisation Paper Submission

DocID: 1tfZa - View Document

Structure at the meta-level: Observations on the structure of design spaces of high-performance solvers for hard combinatorial problems Holger H. Hoos BETA Lab

DocID: 1t84S - View Document

From SIAM News, Volume 37, Number 1, January/FebruaryIn Silico Protein Design: A Combinatorial and Global Optimization Approach By John L. Klepeis and Christodoulos A. Floudas The use of computational techniques t

DocID: 1sU42 - View Document