<--- Back to Details
First PageDocument Content
Matrices / Numerical linear algebra / Matrix theory / Matrix / Positive-definite matrix / Symmetric matrix / Determinant / Algebra / Linear algebra / Mathematics
Date: 2010-05-15 03:45:46
Matrices
Numerical linear algebra
Matrix theory
Matrix
Positive-definite matrix
Symmetric matrix
Determinant
Algebra
Linear algebra
Mathematics

An Implementation of Orrick's Algorithm

Add to Reading List

Source URL: www.loria.fr

Download Document from Source Website

File Size: 476,98 KB

Share Document on Facebook

Similar Documents

Algebra / Mathematical analysis / Mathematics / Probability distributions / Matrix theory / Orthogonal polynomials / Linear algebra / Bessel function / Fourier analysis / Laguerre polynomials / Positive-definite matrix / Eigenvalues and eigenvectors

On the condition number of the critically-scaled Laguerre Unitary Ensemble Percy Deift∗ , Govind Menon† and Thomas Trogdon∗,0 ∗ Courant Institute of Mathematical Sciences

DocID: 1qy9d - View Document

Algebra / Mathematics / Matrix theory / Linear algebra / Matrices / Eigenvalues and eigenvectors / Singular value decomposition / Matrix / Root of unity / Polynomial / Positive-definite matrix / Algebra over a field

On the existence of equiangular tight frames M´aty´as A. Sustik Dept. of Computer Sciences, The University of Texas, Austin, TX 78712

DocID: 1qeEM - View Document

Algebra / Mathematics / Matrices / Laplacian matrix / Kernel / Matrix / Positive-definite matrix

Spectral Graph Theory Lecture 8 Effective Resistance and Schur Complements Daniel A. Spielman

DocID: 1pNZz - View Document

Lambda calculus / Matrices / Positive-definite matrix / Combinatory logic / Spectral theory / Ordinary differential equations

AMOEBAS AND SDP JAN FONIOK AND DANIEL JOHANNSEN Abstract. The hypersurface amoeba membership problem is the problem to decide whether for an input point λ ∈ Rn , the point λ is an element of the amoeba of the hypersu

DocID: 1pIma - View Document

Matrix theory / Linear algebra / Matrices / Algebra / Determinant / Matrix / Square matrix / Eigenvalues and eigenvectors / Matrix exponential / Positive-definite matrix

P-matrix recognition is co-NP-complete Jan Foniok ETH Zurich, Institute for Operations Research R¨amistrasse 101, 8092 Zurich, Switzerland

DocID: 1p3MJ - View Document