<--- Back to Details
First PageDocument Content
Mathematical analysis / Immersion / Normal bundle / Regular homotopy / Homotopy / Transversality / Differentiable manifold / Codimension / Embedding / Topology / Differential topology / Mathematics
Date: 2007-11-07 06:44:46
Mathematical analysis
Immersion
Normal bundle
Regular homotopy
Homotopy
Transversality
Differentiable manifold
Codimension
Embedding
Topology
Differential topology
Mathematics

The compression theorem III: applications Colin Rourke Brian Sanderson

Add to Reading List

Source URL: msp.warwick.ac.uk

Download Document from Source Website

File Size: 189,63 KB

Share Document on Facebook

Similar Documents

Mathematical Foundations of Neuroscience - Sample Questions Lecture 7 - Bifurcations II Filip Piękniewski November 16, 2009 Questions marked with * are not obligatory. 1. List all codimension 1 bifurcations in 2d

DocID: 1veLv - View Document

New York Journal of Mathematics New York J. Math–277. Absolute retract involutions of Hilbert cubes: fixed point sets of infinite codimension

DocID: 1tGTK - View Document

New York Journal of Mathematics New York J. Math–277. Absolute retract involutions of Hilbert cubes: fixed point sets of infinite codimension

DocID: 1tFWq - View Document

H 3 non ramifi´ e et cycles de codimension 2 Jean-Louis Colliot-Th´el`ene (CNRS et Universit´e Paris-Sud) M´ethodes cohomologiques dans la th´eorie des groupes alg´ebriques lin´eaires

DocID: 1sMXY - View Document

Topology / Mathematics / Algebra / Differential geometry / Manifolds / Differential topology / Fiber bundles / Codimension / Linear algebra / Moving frame / Frame bundle / Vector bundle

FRAME BUNDLE APPROACH TO GENERALIZED MINIMAL SUBMANIFOLDS KAMIL NIEDZIALOMSKI Abstract We extend the notion of r–minimality of a submanifold in arbitrary codimension to u–minimality for a multi–index u ∈ Nq , whe

DocID: 1roVH - View Document