<--- Back to Details
First PageDocument Content
Software / Functional languages / Homotopy type theory / Type theory / Coq / Homotopy / Agda / Vladimir Voevodsky / Topology / Homotopy theory / Mathematics
Date: 2013-10-18 06:54:57
Software
Functional languages
Homotopy type theory
Type theory
Coq
Homotopy
Agda
Vladimir Voevodsky
Topology
Homotopy theory
Mathematics

Add to Reading List

Source URL: dlicata.web.wesleyan.edu

Download Document from Source Website

File Size: 1,53 MB

Share Document on Facebook

Similar Documents

Algebra / Abstract algebra / Mathematics / Algebraic geometry / Automorphic forms / Moduli space / Hitchin system / Stack / Langlands program / Drinfeld module / Fundamental lemma / ArthurSelberg trace formula

Proc. Int. Cong. of Math. – 2018 Rio de Janeiro, Vol–1472) HITCHIN TYPE MODULI STACKS IN AUTOMORPHIC REPRESENTATION THEORY Zhiwei Yun (恽之玮)

DocID: 1xVTT - View Document

An adequacy theorem for partial type theory j.w.w. Simon Huber G¨ oteborg, May 11, 2017 An adequacy theorem for partial type theory

DocID: 1v8ox - View Document

E6(6) Exceptional Field Theory: Applications to Type IIB Supergravity on AdS5 ×S5 Arnaud Baguet ´ Ecole Normale Sup´

DocID: 1v5Rr - View Document

Univalent Type Theory Thierry Coquand Tutorial for the Logic Colloquium 2016, Leeds Univalent Type Theory

DocID: 1uZ9e - View Document

Collection Principles in Dependent Type Theory? Peter Aczel1 and Nicola Gambino2 1 Departments of Mathematics and Computer Science, University of Manchester,

DocID: 1uXqs - View Document