<--- Back to Details
First PageDocument Content
Algebraic number theory / Galois theory / Finite fields / Number theory / P-adic Hodge theory / Weil conjectures / Étale cohomology / Étale morphism / Frobenius endomorphism / Abstract algebra / Algebra / Homological algebra
Date: 2013-03-24 09:23:59
Algebraic number theory
Galois theory
Finite fields
Number theory
P-adic Hodge theory
Weil conjectures
Étale cohomology
Étale morphism
Frobenius endomorphism
Abstract algebra
Algebra
Homological algebra

Add to Reading List

Source URL: www.math.uni-bonn.de

Download Document from Source Website

File Size: 525,30 KB

Share Document on Facebook

Similar Documents

Weil-Deligne representations and p-adic Hodge theory: motivation Prologue I’d quickly like to explain what this short note is about. I do this mostly to orient the reader, since (upon rereading) it’s somewhat non-ob

DocID: 1t36n - View Document

The Intrinsic Hodge Theory of p-adic Hyperbolic Curves Shinichi Mochizuki Research Institute for Mathematical Sciences Kyoto University

DocID: 1rW9h - View Document

Algebra / Abstract algebra / Mathematics / Galois theory / Algebraic number theory / Homological algebra / Algebraic geometry / Algebraic topology / tale cohomology / Monodromy / Motive / P-adic Hodge theory

Appendix: On Galois representations with values in G2 Michael Dettweiler and Nicholas M. Katz ¯ ` -sheaf on A1¯ Let ` be a prime and let H(1, 1) be the cohomologically rigid Q Q of rank 7 which is given in Thmo

DocID: 1qSqu - View Document

Mathematics / Algebra / Abstract algebra / Algebraic geometry / Anabelian geometry / Shinichi Mochizuki / Alexander Grothendieck / tale fundamental group / Section conjecture / P-adic Hodge theory

SPECIAL SEMESTER ON ANABELIAN GEOMETRY AND ¨ INTER-UNIVERSAL TEICHMULLER THEORY SPRING 2016 ORGANIZED

DocID: 1qaa2 - View Document

Algebra / Abstract algebra / Mathematics / Algebraic geometry / Algebraic number theory / Cohomology theories / Perfectoid / Shimura variety / P-adic cohomology / Peter Scholze / Cole Prize / P-adic Hodge theory

Curriculum Vitae Prof. Dr. Peter Scholze Geburtsdatum: 11. DezemberAkademischer Werdegang

DocID: 1q9jV - View Document