First Page | Document Content | |
---|---|---|
![]() Date: 2013-06-11 20:42:22Ring theory Homological algebra Algebraic geometry David Buchsbaum Maurice Auslander Koszul complex Depth David Eisenbud Algebraic combinatorics Abstract algebra Algebra Commutative algebra | Source URL: people.brandeis.eduDownload Document from Source WebsiteFile Size: 119,69 KBShare Document on Facebook |
![]() | Computation of the (n-1)-st Koszul Homology of Monomial Ideals and Related Algorithms Anna M. Bigatti ´ ´DocID: 1qvWN - View Document |
![]() | 243 Documenta Math. Koszul Duality and Equivariant Cohomology Matthias FranzDocID: 1pgwZ - View Document |
![]() | 243 Documenta Math. Koszul Duality and Equivariant Cohomology Matthias FranzDocID: 1p2wg - View Document |
![]() | Yesterday Let a = (a1 , . . . , an ) be a sequence of elements in A. The Koszul complex K (a ; A) or its dual K (a ; A) leads to the definition of depth: ·DocID: 1nf6S - View Document |
![]() | ON KONTSEVICH’S HOCHSCHILD COHOMOLOGY CONJECTURE P. HU, I. KRIZ AND A.A. VORONOV 1. Introduction A conjecture of Deligne stated that the Hochschild cohomology complex of anDocID: 1lU6G - View Document |