<--- Back to Details
First PageDocument Content
Functional analysis / Operator theory / Linear algebra / Von Neumann algebras / C*-algebras / Dual space / Hilbert space / Projection / John von Neumann / Algebra / Mathematics / Mathematical analysis
Date: 2011-09-26 09:53:23
Functional analysis
Operator theory
Linear algebra
Von Neumann algebras
C*-algebras
Dual space
Hilbert space
Projection
John von Neumann
Algebra
Mathematics
Mathematical analysis

Add to Reading List

Source URL: www.math.harvard.edu

Download Document from Source Website

File Size: 159,78 KB

Share Document on Facebook

Similar Documents

Week 4 (due April 30) Reading: Srednicky, sections 69, 70. See also a book by Howard Georgi, ”Lie algebras in particle physics”. 1. (a) (10 points) The complex symplectic group Sp(2N, C) is a complex subgroup of GL(2

DocID: 1vpdH - View Document

QUANTIFIER ELIMINATION IN C*-ALGEBRAS CHRISTOPHER J. EAGLE, ILIJAS FARAH, EBERHARD KIRCHBERG, AND ALESSANDRO VIGNATI Abstract. The only C*-algebras that admit elimination of quantifiers in continuous logic are C, C2 , C(

DocID: 1vfFf - View Document

M ath. Res. Lett), no. 00, 10001–100NN c International Press 2011 ALL AUTOMORPHISMS OF ALL CALKIN ALGEBRAS

DocID: 1v2wS - View Document

´ ON THE PRE-BEZOUT PROPERTY OF WIENER ALGEBRAS ON THE DISC AND THE HALF-PLANE RAYMOND MORTINI AND AMOL SASANE Abstract. Let D denote the open unit disk {z ∈ C | |z| < 1}, and C+

DocID: 1v288 - View Document

LOGIC AND C∗ -ALGEBRAS: SET THEORETICAL DICHOTOMIES IN THE THEORY OF CONTINUOUS QUOTIENTS ALESSANDRO VIGNATI A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

DocID: 1uVFh - View Document