<--- Back to Details
First PageDocument Content
Operator theory / Linear algebra / Topological vector spaces / Fourier analysis / Banach spaces / Nuclear space / Fourier transform / Hilbert space / Vector space / Mathematical analysis / Algebra / Mathematics
Date: 2005-11-28 05:06:29
Operator theory
Linear algebra
Topological vector spaces
Fourier analysis
Banach spaces
Nuclear space
Fourier transform
Hilbert space
Vector space
Mathematical analysis
Algebra
Mathematics

Add to Reading List

Source URL: www.math.uni-paderborn.de

Download Document from Source Website

File Size: 90,70 KB

Share Document on Facebook

Similar Documents

Mathematical analysis / Mathematics / Geometry / Geometric group theory / Functional analysis / Topological groups / HahnBanach theorem / Representation theory / Kazhdan's property / Uniform boundedness principle / Reductive group / Banach spaces

Isometric group actions on Banach spaces and representations vanishing at infinity Yves de Cornulier, Romain Tessera, Alain Valette November 28, 2006 Abstract Our main result is that the simple Lie group G = Sp(n, 1) act

DocID: 1xVwt - View Document

Geometry / Mathematics / Algebra / Geometric group theory / Topological groups / Operator theory / Kazhdan's property / Amenable group / Metric geometry / Banach space / Hilbert space / Ample line bundle

Asymptotic isoperimetry on groups and uniform embeddings into Banach spaces. Romain Tessera December 21, 2007 Abstract We characterize the possible asymptotic behaviors of the compression

DocID: 1xV28 - View Document

S J Dilworth* () and B Randrianantoanina. Almost transitive and maximal norms in classical Banach spaces. Preliminary report. We prove that the spaces `p , 1 < p < ∞, p 6= 2, and all th

DocID: 1uWo9 - View Document

New York Journal of Mathematics New York J. Math–complemented subspaces of Banach spaces of universal disposition Jes´

DocID: 1tKs7 - View Document

New York Journal of Mathematics New York J. Math–complemented subspaces of Banach spaces of universal disposition Jes´

DocID: 1tGLo - View Document