<--- Back to Details
First PageDocument Content
Field theory / Étale fundamental group / Profinite group / Absolute Galois group / P-adic number / Field / Anabelian geometry / Sheaf / Algebraic number field / Abstract algebra / Mathematics / Algebra
Date: 2010-10-10 20:03:38
Field theory
Étale fundamental group
Profinite group
Absolute Galois group
P-adic number
Field
Anabelian geometry
Sheaf
Algebraic number field
Abstract algebra
Mathematics
Algebra

arXiv:1010.1314v2 [math.AG] 8 Oct 2010

Add to Reading List

Source URL: arxiv.org

Download Document from Source Website

File Size: 263,45 KB

Share Document on Facebook

Similar Documents

The étale fundamental group Wouter Zomervrucht, December 9, Topology Let X be a connected topological space. Let x ∈ X be a point. An important invariant of ( X, x ) is the (topological) fundamental group

DocID: 1tfA0 - View Document

The pro-étale fundamental group Wouter Zomervrucht, December 16, Infinite Galois theory We develop an ‘infinite’ version of Grothendieck’s Galois theory. It was introduced first by Noohi [3] and slightly m

DocID: 1t9l4 - View Document

Algebraic topology / Homotopy theory / Fundamental group / Quasigroup / Period mapping / Étale morphism / Abstract algebra / Mathematics / Algebra

Fundamental groups and Diophantine geometry Minhyong Kim February 28, 2008 Colloquium le ture, Leeds, January 2008

DocID: RM4y - View Document

Algebraic topology / Scheme theory / Homotopy theory / Algebraic geometry / General topology / Étale morphism / Étale fundamental group / Grothendieck topology / Group scheme / Abstract algebra / Topology / Algebra

Journal de Théorie des Nombres de Bordeaux 00 (XXXX), 000–000 Universal covering spaces and fundamental groups in algebraic geometry as schemes par Ravi Vakil et Kirsten Wickelgren

DocID: RIal - View Document

Field theory / Étale fundamental group / Profinite group / Absolute Galois group / P-adic number / Field / Anabelian geometry / Sheaf / Algebraic number field / Abstract algebra / Mathematics / Algebra

arXiv:1010.1314v2 [math.AG] 8 Oct 2010

DocID: RrtW - View Document