<--- Back to Details
First PageDocument Content
Analysis of algorithms / Arithmetic / Computational complexity theory / Binary GCD algorithm / Big O notation / Summation / Time complexity / Euclidean algorithm / Greatest common divisor / Mathematics / Theoretical computer science / Mathematical notation
Date: 2015-01-21 19:48:43
Analysis of algorithms
Arithmetic
Computational complexity theory
Binary GCD algorithm
Big O notation
Summation
Time complexity
Euclidean algorithm
Greatest common divisor
Mathematics
Theoretical computer science
Mathematical notation

CS 70 Spring 2005 Discrete Mathematics for CS Clancy/Wagner

Add to Reading List

Source URL: www.cs.berkeley.edu

Download Document from Source Website

File Size: 29,34 KB

Share Document on Facebook

Similar Documents

Python program implementing the extended binary GCD algorithm. def ext_binary_gcd(a,b): """Extended binary GCD. Given input a, b the function returns d, s, t such that gcd(a,b) = d = as + bt.""" u, v, s, t, r = 1, 0, 0,

DocID: 1urZz - View Document

Analysis of algorithms / Arithmetic / Computational complexity theory / Binary GCD algorithm / Big O notation / Summation / Time complexity / Euclidean algorithm / Greatest common divisor / Mathematics / Theoretical computer science / Mathematical notation

CS 70 Spring 2005 Discrete Mathematics for CS Clancy/Wagner

DocID: 1az0L - View Document

Computational complexity theory / Greatest common divisor / Euclidean algorithm / Number theory / Time complexity / Factorial / Binary GCD algorithm / Computational complexity of mathematical operations / Mathematics / Theoretical computer science / Multiplicative functions

Algorithmica:1-10 Algorithmica 9 1990Springer-VerlagNew York Inc. An Improved Parallel Algorithm for Integer GCD

DocID: 18E3r - View Document

Greatest common divisor / Least common multiple / Euclidean algorithm / Divisor / Multiplicative order / GCD domain / Binary GCD algorithm / Mathematics / Number theory / Modular arithmetic

Greatest Common Divisor and Least Common Multiple, v3 WG21 N4061N3913, N3845 JTC1Programming Language C++ Walter E. Brown <>

DocID: 17L5g - View Document

Greatest common divisor / Make / Denis Diderot / Mathematics / Binary GCD algorithm / Euclidean algorithm / Software / Multiplicative functions / Computing

Environnements et Outils de Développement Cours 6 — Building with make Stefano Zacchiroli Laboratoire PPS, Université Paris Diderot

DocID: 13DiT - View Document