<--- Back to Details
First PageDocument Content
Machine learning / Estimation theory / Theoretical computer science / Activity recognition / Conditional random field / Maximum likelihood / Hidden Markov model / Information extraction / Likelihood function / Statistics / Graphical models / Bayesian statistics
Date: 2009-08-07 22:08:20
Machine learning
Estimation theory
Theoretical computer science
Activity recognition
Conditional random field
Maximum likelihood
Hidden Markov model
Information extraction
Likelihood function
Statistics
Graphical models
Bayesian statistics

CIGAR: Concurrent and Interleaving Goal and Activity Recognition

Add to Reading List

Source URL: www.cse.ust.hk

Download Document from Source Website

File Size: 412,95 KB

Share Document on Facebook

Similar Documents

Toward Completeness in Concept Extraction and Classification Eduard Hovy and Zornitsa Kozareva USC Information Sciences Institute 4676 Admiralty Way Marina del Rey, CA 90292 ,

DocID: 1vo3X - View Document

ISPRS Commission III on ‘Remote Sensing’ and WG III/5 on ‘Information Extraction from LiDAR Intensity Data’ is pleased to announce the availability of two data sets collected using different sensors and platforms

DocID: 1veuV - View Document

Distributional Semantics for Medical Information Extraction Lautaro Quiroz1, Lydia Mennes2, Mostafa Dehghani1, Evangelos Kanoulas1 1 2 University of Amsterdam, CTcue

DocID: 1v2Ee - View Document

Clinical Information Extraction at the CLEF eHealth Evaluation lab 2016 Aur´elie N´ev´eol1 , K. Bretonnel Cohen1,2 , Cyril Grouin1 , Thierry Hamon1,3 Thomas Lavergne1,4 , Liadh Kelly5 , Lorraine Goeuriot6 Gr´egoire R

DocID: 1v2k0 - View Document

Handling uncertainty in information extraction Maurice van Keulen1 and Mena B. Habib1 University of Twente, Faculty of EEMCS, Enschede, The Netherlands {m.vankeulen,m.badiehhabibmorgan}@utwente.nl Abstract. This positio

DocID: 1uYrq - View Document