<--- Back to Details
First PageDocument Content
Szemerédi regularity lemma / Graph property / Extremal graph theory / Matching / Random graph / Graph homomorphism / Bipartite graph / Graph / Graph coloring / Graph theory / Mathematics / Theoretical computer science
Date: 2005-06-15 03:13:09
Szemerédi regularity lemma
Graph property
Extremal graph theory
Matching
Random graph
Graph homomorphism
Bipartite graph
Graph
Graph coloring
Graph theory
Mathematics
Theoretical computer science

Every Monotone Graph Property is Testable∗ Noga Alon

Add to Reading List

Source URL: www.math.tau.ac.il

Download Document from Source Website

File Size: 222,53 KB

Share Document on Facebook

Similar Documents

On Maximum Differential Graph Coloring Yifan Hu1 , Stephen Kobourov2 , and Sankar Veeramoni2 1 2

DocID: 1uNMt - View Document

Distrib. Comput:261–280 DOIs00446Distributed algorithms for the Lovász local lemma and graph coloring Kai-Min Chung1 · Seth Pettie2 · Hsin-Hao Su3

DocID: 1uyZk - View Document

Graph and hypergraph oloring Mi hael Krivelevi h 1. Basi de nitions: vertex oloring, hromati number, edge oloring, hromati index. Coloring in nite graphs, De Brujin-Erd}os theorem 2. Vertex degrees and olorings.

DocID: 1upWX - View Document

Distributed Computing Prof. R. Wattenhofer BA/MA/SA: Heuristics for Graph Coloring

DocID: 1uobf - View Document

AUT Journal of Electrical Engineering AUT J. Elec. Eng., 130 DOI: eejData Hiding Method Based on Graph Coloring and Pixel Block‘s Correlation in Color Image

DocID: 1tYtr - View Document