<--- Back to Details
First PageDocument Content
Estimation theory / Statistical theory / Parametric model / Loss function / Fisher information / Expectationmaximization algorithm / Divergence / Likelihood function / Gradient descent
Date: 2016-05-26 17:40:03
Estimation theory
Statistical theory
Parametric model
Loss function
Fisher information
Expectationmaximization algorithm
Divergence
Likelihood function
Gradient descent

Energetic Natural Gradient Descent

Add to Reading List

Source URL: psthomas.com

Download Document from Source Website

File Size: 646,96 KB

Share Document on Facebook

Similar Documents

Stat 928: Statistical Learning Theory Lecture: 4 The Central Limit Theorem; Large Deviations; and Rate Functions Instructor: Sham Kakade

DocID: 1vkcR - View Document

Stat 928: Statistical Learning Theory Lecture: 22 Exponentiated Gradient Descent Instructor: Sham Kakade

DocID: 1vbLp - View Document

ECE901 Spring 2007 Statistical Learning Theory Instructor: R. Nowak Lecture 13: Maximum Likelihood Estimation

DocID: 1vbHd - View Document

Statistical learning theory : a primer Louis Wehenkel University of Li`ege - Institut Montefiore Department of Electrical Engineering and Computer Science Email : February 1, 2018

DocID: 1v6Ai - View Document

Stat 928: Statistical Learning Theory Lecture: 19 Perceptron Lower Bound & The Winnow Algorithm Instructor: Sham Kakade

DocID: 1v3Qc - View Document