<--- Back to Details
First PageDocument Content
Mathematical analysis / Numerical analysis / Mathematics / Differential calculus / Rates / Vector calculus / Convex analysis / Gradient descent / Convex optimization / Mathematical optimization / Derivative / Normal
Date: 2016-06-04 09:49:43
Mathematical analysis
Numerical analysis
Mathematics
Differential calculus
Rates
Vector calculus
Convex analysis
Gradient descent
Convex optimization
Mathematical optimization
Derivative
Normal

CS168: The Modern Algorithmic Toolbox Lecture #5: Gradient Descent Basics Tim Roughgarden & Gregory Valiant∗ April 11,

Add to Reading List

Source URL: theory.stanford.edu

Download Document from Source Website

File Size: 363,19 KB

Share Document on Facebook

Similar Documents

Classroom Voting Questions: Multivariable Calculus 18.4 Path-Dependent Vector Fields and Green’s Theorem 1. What will guarantee that F~ (x, y) = yˆi + g(x, y)ˆj is not a gradient vector field? (a) g(x, y) is a functi

Classroom Voting Questions: Multivariable Calculus 18.4 Path-Dependent Vector Fields and Green’s Theorem 1. What will guarantee that F~ (x, y) = yˆi + g(x, y)ˆj is not a gradient vector field? (a) g(x, y) is a functi

DocID: 1v8ZZ - View Document

Classroom Voting Questions: Multivariable Calculus 19.2 Flux Integrals For Graphs, Cylinders, and Spheres 1. The flux of the vector field F~ = 4ˆ ρ through a sphere of radius 2 centered on the origin is:

Classroom Voting Questions: Multivariable Calculus 19.2 Flux Integrals For Graphs, Cylinders, and Spheres 1. The flux of the vector field F~ = 4ˆ ρ through a sphere of radius 2 centered on the origin is:

DocID: 1uXlX - View Document

Classroom Voting Questions: Multivariable Calculus 20.1 The Divergence of a Vector Field 1. Moving from the picture on the left to the picture on the right, what are the signs of ∇ · F~ ?

Classroom Voting Questions: Multivariable Calculus 20.1 The Divergence of a Vector Field 1. Moving from the picture on the left to the picture on the right, what are the signs of ∇ · F~ ?

DocID: 1uLvn - View Document

Classroom Voting Questions: Multivariable Calculus 18.3 Gradient Fields and Path-Independent Fields 1. The vector field shown is the gradient vector field of f (x, y). Which of the following are equal to f (1, 1)?

Classroom Voting Questions: Multivariable Calculus 18.3 Gradient Fields and Path-Independent Fields 1. The vector field shown is the gradient vector field of f (x, y). Which of the following are equal to f (1, 1)?

DocID: 1uEgR - View Document

Classroom Voting Questions: Multivariable Calculus 20.2 The Divergence Theorem 1. Given a small cube resting on the xy plane with corners at (0, 0, 0), (a, 0, 0), (a, a, 0), and (0, a, 0), which vector field will produce

Classroom Voting Questions: Multivariable Calculus 20.2 The Divergence Theorem 1. Given a small cube resting on the xy plane with corners at (0, 0, 0), (a, 0, 0), (a, a, 0), and (0, a, 0), which vector field will produce

DocID: 1uEeY - View Document