First Page | Document Content | |
---|---|---|
![]() Date: 2010-10-30 00:56:22Statistics Mathematical analysis Stochastic optimization Lipschitz continuity Spectral theory Convex optimization Artificial neural network Stochastic gradient descent Spectral theory of ordinary differential equations Computational statistics Mathematics Neural networks | Add to Reading List |
![]() | Orthogonal Polynomials and Spectral Algorithms Nisheeth K. Vishnoi 1.0 d=0DocID: 1uxDb - View Document |
![]() | MODULE AND FILTERED KNOT HOMOLOGY THEORIES JEFF HICKS Abstract. We provide a new way to define Bar-Natan’s F2 [u] knot homology theory. The u torsion of BN •,• is shown to explicitly give Turner’s spectral sequenDocID: 1tmp7 - View Document |
![]() | Lecture Notes on Expansion, Sparsest Cut, and Spectral Graph Theory Luca Trevisan University of California, BerkeleyDocID: 1t8rW - View Document |
![]() | Spectral Graph Theory and its Applications Lecture 10 Expander Codes Lecturer: Daniel A. SpielmanDocID: 1sypf - View Document |
![]() | Spectral Graph Theory Lecture 15 Properties of Expander Graphs Daniel A. SpielmanDocID: 1sweE - View Document |