First Page | Document Content | |
---|---|---|
![]() Date: 1998-07-30 11:27:00Generalized minimal residual method Biconjugate gradient stabilized method Krylov subspace Conjugate gradient method Vehicle Identification Number Polynomial Numerical linear algebra Mathematics Mathematical analysis | Source URL: www.emis.ams.orgDownload Document from Source WebsiteFile Size: 296,10 KBShare Document on Facebook |
![]() | . CONVERGENCE ANALYSIS OF RESTARTED KRYLOV SUBSPACE EIGENSOLVERS KLAUS NEYMEYR∗ AND MING ZHOU∗ Abstract. The A-gradient minimization of the Rayleigh quotient allows to construct robust and fastconvergent eigensolverDocID: 1tdNn - View Document |
![]() | A parallel Newton-Krylov flow solver for the Euler equations on multi-block grids Jason E. Hicken∗ and David W. Zingg †DocID: 1qp2p - View Document |
![]() | OT109_OLearyFM-A:OT109_OLearyFM-A.qxdDocID: 1qffI - View Document |
![]() | 8 The Lanczos Method Erik Koch Computational Materials Science German Research School for Simulation SciencesDocID: 1pIEI - View Document |
![]() | 10 The Lanczos Method Erik Koch Computational Materials Science German Research School for Simulation Sciences Julich ¨DocID: 1pI4i - View Document |