<--- Back to Details
First PageDocument Content
Information science / Information retrieval / Software / Recommender systems / Music information retrieval / Music software / Natural language processing / Collaborative filtering / Last.fm
Date: 2013-04-18 01:28:58
Information science
Information retrieval
Software
Recommender systems
Music information retrieval
Music software
Natural language processing
Collaborative filtering
Last.fm

Hybrid Retrieval Approaches to Geospatial Music Recommendation Markus Schedl Dominik Schnitzer

Add to Reading List

Source URL: www.cp.jku.at

Download Document from Source Website

File Size: 309,20 KB

Share Document on Facebook

Similar Documents

Next-Term Student Performance Prediction: A Recommender Systems Approach∗ Mack Sweeney Computer Science George Mason University

DocID: 1vgeP - View Document

Schema-summarization in Linked-Data-based feature selection for recommender systems Azzurra Ragone1 , Paolo Tomeo2 , Corrado Magarelli2 , Tommaso Di Noia2 , Matteo Palmonari1 Andrea Maurino1 , Eugenio Di Sciascio2 1 1

DocID: 1uPCf - View Document

Information science / Humancomputer interaction / Library science / Knowledge representation / Personalization / World Wide Web / Digital library / Library / Recommender system / User modeling / Adaptation / Draft:Tourism 4.0

Personalisation and Recommender Systems in Digital Libraries Joint NSF-EU DELOS Working Group Report May 2003 Jamie Callan, Carnegie Mellon University, USA Alan Smeaton, Dublin City University, Ireland

DocID: 1tUcx - View Document

Returning is Believing: Optimizing Long-term User Engagement in Recommender Systems Qingyun Wu, Hongning Wang Liangjie Hong∗

DocID: 1tJRw - View Document

Journal of Machine Learning Research656 Submitted 3/08; Revised 11/08; Published 3/09 Scalable Collaborative Filtering Approaches for Large Recommender Systems

DocID: 1tkme - View Document