<--- Back to Details
First PageDocument Content
Mathematical analysis / Sobolev spaces / Mathematics / Partial differential equations / Geometry / Lipschitz domain / Operator theory / Sobolev spaces for planar domains
Date: 2014-08-08 12:34:20
Mathematical analysis
Sobolev spaces
Mathematics
Partial differential equations
Geometry
Lipschitz domain
Operator theory
Sobolev spaces for planar domains

Prague-Sum_abstract_Medkova.dvi

Add to Reading List

Source URL: www.prague-sum.com

Download Document from Source Website

File Size: 45,06 KB

Share Document on Facebook

Similar Documents

Mathematical analysis / Sobolev spaces / Mathematics / Partial differential equations / Geometry / Lipschitz domain / Operator theory / Sobolev spaces for planar domains

Prague-Sum_abstract_Medkova.dvi

DocID: 1qZi5 - View Document

Sobolev spaces / Operator theory / Partial differential equations / Complex analysis / Linear algebra / Lipschitz domain / Hermitian manifold / Hilbert space / Sobolev spaces for planar domains / Differential forms on a Riemann surface

687 Documenta Math. Interface and mixed boundary value problems on n-dimensional polyhedral domains

DocID: 1pA6M - View Document

Riemann integral / Lipschitz continuity / Henri Lebesgue / Lebesgue integration / Continuous function / Absolute continuity / Commutative algebra / Mathematical analysis / Measure theory / Integral

Domain Theory and Integral Calculus Abbas Edalat Imperial College London IPM, Tehran IPM, Isfahan

DocID: 1aHuE - View Document

Lipschitz continuity / Lipschitz maps / Continuous function / Mathematical optimization / Derivative / Function / Lipschitz domain / Modulus of continuity / Mathematical analysis / Mathematics / Functions and mappings

doi:Continuity and Robustness of Programs By Swarat Chaudhuri, Sumit Gulwani, and Roberto Lublinerman

DocID: 18FiY - View Document

Geometry / Calculus / Continuous function / Lipschitz domain / Surreal number / Poincaré inequality / Mathematical analysis / Mathematics / Sobolev spaces

THE STEKLOV SPECTRUM ON MOVING DOMAINS BENIAMIN BOGOSEL Abstract. We study the continuity of the Steklov spectrum on variable domains with respect to the Hausdorff convergence. A key point of the article is understanding

DocID: 15lG6 - View Document