<--- Back to Details
First PageDocument Content
3-manifolds / Geometric topology / Curvature / Riemannian geometry / Geometric flow / Ricci flow / Ricci curvature / Poincaré conjecture / Scalar curvature / Topology / Differential geometry / Geometry
Date: 2008-06-06 10:35:31
3-manifolds
Geometric topology
Curvature
Riemannian geometry
Geometric flow
Ricci flow
Ricci curvature
Poincaré conjecture
Scalar curvature
Topology
Differential geometry
Geometry

Ricci Flow and the Poincaré Conjecture

Add to Reading List

Source URL: www.claymath.org

Download Document from Source Website

File Size: 3,65 MB

Share Document on Facebook

Similar Documents

Ricci Flow for Warped Product Manifolds Kartik Prabhu (05PH2001) Supervisor: Dr. Sayan Kar Dept. of Physics & Meteorology Indian Institute of Technology Kharagpur May 04, 2010

DocID: 1tLpR - View Document

Mathematical analysis / Convex analysis / Mathematics / Geometry / Convex function / Differential geometry of surfaces / Ricci flow / Convex set / Legendre transformation / Flow / Height

Annals of Mathematics), 1185–1239 doi: annalsConvex solutions to the mean curvature flow By Xu-Jia Wang

DocID: 1qXmF - View Document

Curvature / Riemannian geometry / Partial differential equations / Geometric flow / Ricci flow / Sectional curvature / Scalar curvature / Ricci curvature / Riemannian manifold / Moduli space / Manifold / Einstein manifold

arXiv:1601.04877v2 [math.DG] 25 JanNonconnected Moduli Spaces of Nonnegative Sectional Curvature Metrics on Simply Connected Manifolds Anand Dessai∗, Stephan Klaus, and Wilderich Tuschmann

DocID: 1p1yx - View Document

THE CONJUGATE HEAT EQUATION AND ANCIENT SOLUTIONS OF THE RICCI FLOW arXiv:1006.0540v1 [math.DG] 3 JunXIAODONG CAO

DocID: 1nuSx - View Document

Applications of Persistent Homology to Simplicial Ricci Flow Paul M. Alsing∗1 , Howard A. Blair†2 , Matthew Corne‡1 , Gordon Jones§3 , Warner A. Miller¶4 , Konstantin Mischaikowk5 and Vidit Nanda∗∗6 1 2

DocID: 1lpGa - View Document