<--- Back to Details
First PageDocument Content
Geometric topology / Legendrian knot / Thurston–Bennequin number / Contact geometry / Lenhard Ng / Transverse knot / Knot invariant / Floer homology / Unknot / Knot theory / Topology / Abstract algebra
Date: 2010-02-11 12:11:25
Geometric topology
Legendrian knot
Thurston–Bennequin number
Contact geometry
Lenhard Ng
Transverse knot
Knot invariant
Floer homology
Unknot
Knot theory
Topology
Abstract algebra

Add to Reading List

Source URL: www.ams.org

Download Document from Source Website

File Size: 995,48 KB

Share Document on Facebook

Similar Documents

Knot theory / Knot invariants / Alexander polynomial / Polynomials / Knot / Slice knot / Crossing number / Satellite knot / Unknot / Torus knot

CORRECTION TO ‘NEW TOPOLOGICALLY SLICE KNOTS’ STEFAN FRIEDL AND PETER TEICHNER Abstract. In [FT05, Figure 1.5] an incorrect example for [FT05, Theorem 1.3] was given. In this note we present a correct example. We fi

DocID: 1oFxV - View Document

Radical Rings, Quantum Groups, and “Theory of the Unknot” Wolfgang Rump In this talk, I will throw a bridge from radical rings to a variety of quantum-like mathematical structures

DocID: 1kVxq - View Document

Algebra / Jones polynomial / Skein relation / Trefoil knot / Knot polynomial / Unknot / Bracket polynomial / Knot invariant / Whitehead link / Knot theory / Topology / Abstract algebra

Tackling Fluid Structures Complexity by the Jones Polynomial

DocID: 182gI - View Document

Mathematical analysis / Geometric topology / Analytic number theory / Conjectures / Unknotting problem / Unknot / Ambient isotopy / Riemann hypothesis / Homeomorphism / Topology / Mathematics / Knot theory

Errata to “Topological Algorithms for Graphs on Surfaces” Éric Colin de Verdière August 17, 2012

DocID: 17OaZ - View Document

Differential topology / Homology theory / Floer homology / Khovanov homology / Stiefel–Whitney class / Line bundle / Vector bundle / Spectral sequence / Cobordism / Topology / Abstract algebra / Algebraic topology

Khovanov homology is an unknot-detector P. B. Kronheimer and T. S. Mrowka Harvard University, Cambridge MA[removed]Massachusetts Institute of Technology, Cambridge MA[removed]Abstract. We prove that a knot is the unknot if

DocID: NQ0i - View Document