<--- Back to Details
First PageDocument Content
Cryptography / Integer sequences / Primality tests / Prime numbers / Probable prime / Modular arithmetic / Strong pseudoprime / Fermat pseudoprime / Generating primes / Pseudoprimes / Mathematics / Number theory
Date: 2012-05-10 15:54:39
Cryptography
Integer sequences
Primality tests
Prime numbers
Probable prime
Modular arithmetic
Strong pseudoprime
Fermat pseudoprime
Generating primes
Pseudoprimes
Mathematics
Number theory

Add to Reading List

Source URL: www.karaarslan.net

Download Document from Source Website

File Size: 82,15 KB

Share Document on Facebook

Similar Documents

Pseudoprimes / Mathematics / Number theory / Integer sequences / Discrete mathematics / Fermat pseudoprime / Carmichael number / MillerRabin primality test / Prime number / Primality test / Mersenne prime / Unique prime

Pseudoprimes and Carmichael Numbers Emily Riemer MATH0420 May 3,

DocID: 1mNn0 - View Document

Mathematics / Primality tests / Number theory / Cryptography / Integer sequences / Prime number / Primality certificate / Integer factorization / Fermat number / Mersenne prime / Pseudoprime / Randomized algorithm

LNCSFaster Primality Testing

DocID: 1lq38 - View Document

Pseudoprimes / Modular arithmetic / Abstract algebra / Miller–Rabin primality test / Solovay–Strassen primality test / Probable prime / Fermat primality test / Prime number / Strong pseudoprime / Mathematics / Number theory / Primality tests

This is a Chapter from the Handbook of Applied Cryptography, by A. Menezes, P. van Oorschot, and S. Vanstone, CRC Press, 1996. For further information, see www.cacr.math.uwaterloo.ca/hac CRC Press has granted the followi

DocID: Ra8O - View Document

Integer sequences / Modular arithmetic / Fermat number / Carmichael number / Prime number / Coprime / Lucas pseudoprime / Strong pseudoprime / Mathematics / Number theory / Pseudoprimes

Carmichael numbers and pseudoprimes Notes by G.J.O. Jameson Introduction Recall that Fermat’s “little theorem” says that if p is prime and a is not a multiple of p, then ap−1 ≡ 1 mod p.

DocID: cX8l - View Document

Primality tests / AKS primality test / Quadratic residue / Prime number / Lucas primality test / Generalized Riemann hypothesis / Mersenne prime / Pseudoprime / Riemann hypothesis / Mathematics / Abstract algebra / Number theory

PRIMALITY TESTING: VARIATIONS ON A THEME OF LUCAS CARL POMERANCE ´ Abstract. This survey traces an idea of Edouard Lucas that is a common element in various primality tests. These tests include those based on Fermat’s

DocID: 8Hpn - View Document