<--- Back to Details
First PageDocument Content
Linear algebra / LU decomposition / QR algorithm / QR decomposition / Generalized minimal residual method / Fast Fourier transform / Divide and conquer algorithm / Orthogonal matrix / Numerical analysis / Mathematics / Numerical linear algebra / Algebra
Linear algebra
LU decomposition
QR algorithm
QR decomposition
Generalized minimal residual method
Fast Fourier transform
Divide and conquer algorithm
Orthogonal matrix
Numerical analysis
Mathematics
Numerical linear algebra
Algebra

Add to Reading List

Source URL: s.prasanth.googlepages.com

Download Document from Source Website

Share Document on Facebook

Similar Documents

Numerical linear algebra / Mathematics / Preconditioner / Mathematical analysis / Iterative method / Generalized minimal residual method / Optimal control / Computational science

MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Sparse Preconditioning for Model Predictive Control Knyazev, A.; Malyshev, A. TR2016-046

DocID: 1rdHo - View Document

Algebra / Linear algebra / Mathematics / Numerical linear algebra / Matrix theory / Spectral theory / SLEPc / Eigenvalues and eigenvectors / Arnoldi iteration / Nonlinear eigenproblem / Generalized minimal residual method / Matrix

PARALLEL KRYLOV SOLVERS FOR THE POLYNOMIAL EIGENVALUE PROBLEM IN SLEPc∗ CARMEN CAMPOS† AND JOSE E. ROMAN† Abstract. Polynomial eigenvalue problems are often found in scientific computing applications. When the coef

DocID: 1qSyX - View Document

Algebra / Mathematics / Linear algebra / Numerical linear algebra / Iterative method / Generalized minimal residual method / Multigrid method / Singular value decomposition / Numerical analysis / Krylov subspace / Matrix / Finite element method

OT109_OLearyFM-A:OT109_OLearyFM-A.qxd

DocID: 1qffI - View Document

Numerical linear algebra / Krylov subspace / Generalized minimal residual method / Iterative method / Biconjugate gradient stabilized method / Preconditioner / Matrix / Lis / Sparse matrix / Conjugate gradient method / IML++ / Arnoldi iteration

Efficiency of general Krylov methods on GPUs – An experimental study Hartwig Anzt, Jack Dongarra University of Tennessee Knoxville, TN, USA {hanzt,dongarra}@icl.utk.edu

DocID: 1puu9 - View Document

Numerical linear algebra / Incomplete LU factorization / Preconditioner / Computational fluid dynamics / Iterative method / Lis / NewtonKrylov method / Schur complement / Matrix / Generalized minimal residual method / SLEPc

Comparison of parallel preconditioners for a Newton-Krylov flow solver Jason E. Hicken, Michal Osusky, and David W. Zingg 1 Introduction Analysis of the results from the AIAA Drag Prediction workshops (Mavriplis et al,

DocID: 1paEo - View Document