<--- Back to Details
First PageDocument Content
Bayesian statistics / M-estimators / Maximum likelihood / Copula / Marginal likelihood / Fisher information / Likelihood function / Multivariate normal distribution / Parametric model / Statistics / Estimation theory / Statistical theory
Date: 2014-03-04 18:56:11
Bayesian statistics
M-estimators
Maximum likelihood
Copula
Marginal likelihood
Fisher information
Likelihood function
Multivariate normal distribution
Parametric model
Statistics
Estimation theory
Statistical theory

Information bounds for Gaussian copulas

Add to Reading List

Source URL: www.stat.washington.edu

Download Document from Source Website

File Size: 176,47 KB

Share Document on Facebook

Similar Documents

Likelihood Function .... Method of Moments ...........

DocID: 1vn7a - View Document

NOISE ROBUST SPEECH RECOGNITION USING GAUSSIAN BASIS FUNCTIONS FOR NON-LINEAR LIKELIHOOD FUNCTION APPROXIMATION Chris Pal½ ¾ , Brendan Frey½ ¾ and Trausti Kristjansson ½ ¾ ½ ¾

DocID: 1uuy9 - View Document

The shape of the one-dimensional phylogenetic likelihood function

DocID: 1u9Og - View Document

Is Bayes posterior just quick and dirty confidence? D.A.S. Fraser March 9, 2009 Abstract Bayesintroduced the observed likelihood function to statistical inference and provided a weight function to calibrate the p

DocID: 1t5Vr - View Document

On the Application of Automatic Differentiation to the Likelihood Function for Dynamic General Equilibrium Models

DocID: 1ryLK - View Document