<--- Back to Details
First PageDocument Content
Field theory / Étale fundamental group / Profinite group / Absolute Galois group / P-adic number / Field / Anabelian geometry / Sheaf / Algebraic number field / Abstract algebra / Mathematics / Algebra
Date: 2010-10-10 20:03:38
Field theory
Étale fundamental group
Profinite group
Absolute Galois group
P-adic number
Field
Anabelian geometry
Sheaf
Algebraic number field
Abstract algebra
Mathematics
Algebra

arXiv:1010.1314v2 [math.AG] 8 Oct 2010

Add to Reading List

Source URL: arxiv.org

Download Document from Source Website

File Size: 263,45 KB

Share Document on Facebook

Similar Documents

O N PROFINITE GROUPS WITH POLYNOMIALLY BOUNDED M ÖBIUS NUMBERS Andrea Lucchini Università di Padova, Italy ISCHIA GROUP THEORY 2010

DocID: 1uXtk - View Document

THE PROBABILISTIC ZETA FUNCTION OF FINITE AND PROFINITE GROUPS ANDREA LUCCHINI To a finitely generated profinite group G one may associate the numerical sequence an (G) defined by

DocID: 1s18p - View Document

Group theory / Algebra / Abstract algebra / Infinite group theory / Topological groups / Profinite group / Lie groups / Pro-p group / Sylow theorems / Subgroup growth / Frattini subgroup / Index of a subgroup

Profinite groups with NIP theory and p-adic analytic groups Katrin Tent†, Mathematisches Institut, Universit¨at M¨ unster,

DocID: 1rfyI - View Document

Algebra / Abstract algebra / Mathematics / Group theory / Algebraic number theory / Homological algebra / Embedding problem / Field theory / Galois theory / Profinite group / Group cohomology / Cohomology

1467 Documenta Math. Triple Massey Products over Global Fields J ÁN M INÁ Cˇ

DocID: 1r4M5 - View Document

Mathematics / Algebra / Geometry / Group theory / Infinite group theory / Geometric group theory / Topological groups / Profinite group / Betti number / Presentation of a group / Index of a subgroup / Residually finite group

THE FIRST L2 -BETTI NUMBER AND APPROXIMATION IN ARBITRARY CHARACTERISTIC arXiv:1206.0474v3 [math.GR] 24 Feb 2014 ¨

DocID: 1qGz8 - View Document