<--- Back to Details
First PageDocument Content
Linear complementarity problem / Mathematical optimization / Crank–Nicolson method / Calculus / Mathematical series / Stochastic differential equations / Holomorphic functional calculus / Euler summation / Mathematics / Mathematical analysis / Linear algebra
Date: 1999-06-18 14:01:19
Linear complementarity problem
Mathematical optimization
Crank–Nicolson method
Calculus
Mathematical series
Stochastic differential equations
Holomorphic functional calculus
Euler summation
Mathematics
Mathematical analysis
Linear algebra

Add to Reading List

Source URL: www.cs.cornell.edu

Download Document from Source Website

File Size: 47,91 KB

Share Document on Facebook

Similar Documents

MATHEMATICAL ENGINEERING TECHNICAL REPORTS Total Dual Integrality of the Linear Complementarity Problem

DocID: 1rSsP - View Document

Mathematical optimization / Mathematics / Operations research / Linear programming / Convex optimization / Quadratic programming / Interior point method / Duality / Network simplex algorithm / Linear complementarity problem / KarushKuhnTucker conditions / Simplex algorithm

PDF Document

DocID: 1rh3U - View Document

Computational complexity theory / Mathematics / Operations research / Algebra / Linear algebra / Linear complementarity problem / Mathematical optimization / Linear programming / NP / Inequality / Time complexity / LCP array

MATHEMATICAL ENGINEERING TECHNICAL REPORTS Sparse Linear Complementarity Problems Hanna SUMITA, Naonori KAKIMURA, and

DocID: 1qdg4 - View Document

Mathematical optimization / Quadratic programming / Haptic technology / Sequential quadratic programming / Linear programming / AMPL / Linear complementarity problem / Constrained optimization / GAUSS / Multibody system

Efficient Nonlinear Skin Simulation for Multi-Finger Tactile Rendering Alvaro G. Perez1 , Gabriel Cirio1 , Daniel Lobo1 , Francesco Chinello2,3 , Domenico Prattichizzo2,3 and Miguel A. Otaduy1 Abstract— Recent advance

DocID: 1puOp - View Document

Mathematical optimization / Operations research / Convex optimization / Linear algebra / Linear programming / Duality / Eigenvalues and eigenvectors / Constrained optimization / Algorithm / Linear complementarity problem / Convex analysis

c 2010 Society for Industrial and Applied Mathematics  SIAM J. OPTIM. Vol. 0, No. 0, pp. 000–000

DocID: 1phSQ - View Document