<--- Back to Details
First PageDocument Content
Pseudorandomness / Pseudorandom number generators / Computational complexity theory / Algorithmic information theory / Pseudorandom generator / Blum Blum Shub / RC4 / Naor-Reingold Pseudorandom Function / Theoretical computer science / Cryptography / Applied mathematics
Date: 2007-09-27 11:26:00
Pseudorandomness
Pseudorandom number generators
Computational complexity theory
Algorithmic information theory
Pseudorandom generator
Blum Blum Shub
RC4
Naor-Reingold Pseudorandom Function
Theoretical computer science
Cryptography
Applied mathematics

Add to Reading List

Source URL: www.cs.princeton.edu

Download Document from Source Website

File Size: 142,32 KB

Share Document on Facebook

Similar Documents

Modèle de Blum, Shub et Smale Théorème de transfert pour la question P = NP dans

DocID: 1nqo9 - View Document

Dual EC DRBG / National Institute of Standards and Technology / National Security Agency / Factorial / Blum Blum Shub / RBG / One-way function / Mathematics / Pseudorandom number generators / Cryptography

. The Dual Elliptic Curve Deterministic RBG . Background, Specification, Security and Notes

DocID: 16F7Z - View Document

Binary arithmetic / Cryptographically secure pseudorandom number generator / Parity bit / RSA / Boolean algebra / FO / XTR / Blum Blum Shub / Blum–Goldwasser cryptosystem / Cryptography / Pseudorandom number generators / Electronic commerce

--- Efficient and Secure Pseudo-Random Number Generation. (Extended Abstract) Umesh V. Vazirani *

DocID: zPw4 - View Document

Algebraic topology / Structural complexity theory / Field theory / Time hierarchy theorem / Constructible sheaf / Algebraic geometry / Sheaf / Constructible function / Constructible universe / Abstract algebra / Mathematics / Algebra

A COMPLEXITY THEORY OF CONSTRUCTIBLE FUNCTIONS AND SHEAVES SAUGATA BASU Abstract. In this paper we introduce analogues of the discrete complexity classes VP and VNP of sequences of functions in the Blum-Shub-Smale model.

DocID: 8JiD - View Document

Science / Stephen Smale / Computational complexity theory / Blum–Shub–Smale machine / Theory of computation / Real algebraic geometry / Hypercomputation / Real computation / Mathematics / Theoretical computer science / Algebraic geometry

Motivation (Discrete) Polynomial Hierarchy Blum-Shub-Smale Models of Computation

DocID: 5ARc - View Document