<--- Back to Details
First PageDocument Content
Fractional calculus / Viscoelasticity / Kelvin–Voigt material / Laplace transform / Materials science / Mathematical analysis / Non-Newtonian fluids
Date: 2012-04-19 01:43:53
Fractional calculus
Viscoelasticity
Kelvin–Voigt material
Laplace transform
Materials science
Mathematical analysis
Non-Newtonian fluids

Geomechanics and Engineering, Vol. 4, No[removed] 67 Technical Note

Add to Reading List

Source URL: technopress.kaist.ac.kr

Download Document from Source Website

File Size: 378,93 KB

Share Document on Facebook

Similar Documents

J. Non-Newtonian Fluid Mech–125 Stochastic models of polymeric fluids at small Deborah number T. Li a,∗ , E. Vanden-Eijnden b,d , P. Zhang a , W. E c,d a

DocID: 1uEe3 - View Document

Viscosity / Fluid mechanics / Fluid dynamics / Physics / Liquid / Measuring instruments / Matter / Non-Newtonian fluids / Viscometer / Rheometer

Viscosity model of heavy oil with calibration of shear velocity data

DocID: 1rbSG - View Document

Physics / Fluid dynamics / Materials science / Chemistry / Continuum mechanics / Non-Newtonian fluids / Elasticity / Viscosity / Dynamic mechanical analysis / Viscoelasticity / Dynamic modulus / Rheology

Shear thinning behavior of heavy oil samples: Laboratory measurements and modeling

DocID: 1qGkH - View Document

Mechanics / Physics / Solid mechanics / Continuum mechanics / Tensors / Elasticity / Non-Newtonian fluids / Viscosity / Shear stress / Constitutive equation / Deformation / Stress

J. Fluid Mech), vol. 784, pp. 199–224. doi:jfmc Cambridge University Press 2015

DocID: 1q7SK - View Document

Biology / Mechanics / Solid mechanics / Cell biology / Non-Newtonian fluids / Cell signaling / Focal adhesion / Deformation / Enzyme

This article was downloaded by: [University of South Florida] On: 28 November 2012, At: 11:33 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: Registered office: Mortimer

DocID: 1q68J - View Document