<--- Back to Details
First PageDocument Content
Geometry / Fractal / Sierpinski triangle / Shape / Tessellation / Logarithm / Pattern / Fractal dimension / Hausdorff dimension / Fractals / Mathematics / Dimension
Date: 2011-10-29 18:41:48
Geometry
Fractal
Sierpinski triangle
Shape
Tessellation
Logarithm
Pattern
Fractal dimension
Hausdorff dimension
Fractals
Mathematics
Dimension

Microsoft Word - stat_geom_described_v3

Add to Reading List

Source URL: john-art.com

Download Document from Source Website

File Size: 2,27 MB

Share Document on Facebook

Similar Documents

Brownian motion with variable drift: 0-1 laws, hitting probabilities and Hausdorff dimension Yuval Peres∗ Perla Sousi†

DocID: 1uLUm - View Document

Hausdorff dimension and subgroups of SU (2) Elon Lindenstrauss and Nicolas de Saxc´e∗ August 9, 2013 Abstract We prove that any Borel measurable proper dense subgroup of SU (2)

DocID: 1sL1Q - View Document

Fractals / Mathematics / Mathematical analysis / Dimension / Fractal dimension / Variogram / Fractal landscape / Fractal / Hausdorff dimension / Self-similarity

MEASURING THE DIMENSION OF SURFACES: A REVIEW AND APPRAISAL OF DIFFERENT METHODS Andre G. Roy Ginette Gravel and Celine Gauthier

DocID: 1rcN5 - View Document

Mathematics / Mathematical analysis / Dimension theory / Geometry / Fractals / Metric geometry / Effective dimension / Kakeya set / Hausdorff dimension / MinkowskiBouligand dimension / Kolmogorov complexity / Limit of a function

Algorithmic information, plane Kakeya sets, and conditional dimension Jack H. Lutz∗ Neil Lutz†

DocID: 1r9sX - View Document

Fractals / Mathematics / Metaphysics / Mathematical analysis / Fractal / Scale invariance / Self-similarity / Power law / Emergence / Hausdorff dimension / Species distribution / Pattern

CHAPTER FIVE Geometry of species distributions: random clustering and scale invariance ARNOSˇ T L . Sˇ IZLING Charles University, Prague

DocID: 1qY72 - View Document