<--- Back to Details
First PageDocument Content
Mathematics / Benoit Mandelbrot / Mandelbrot set / The Fractal Geometry of Nature / Fractal dimension / Fractal / The Beauty of Fractals / Chaos theory / Minkowski–Bouligand dimension / Fractals / Dimension / Mathematical analysis
Date: 2006-02-03 10:42:09
Mathematics
Benoit Mandelbrot
Mandelbrot set
The Fractal Geometry of Nature
Fractal dimension
Fractal
The Beauty of Fractals
Chaos theory
Minkowski–Bouligand dimension
Fractals
Dimension
Mathematical analysis

Proceedings Proceedings of of Symposia

Add to Reading List

Source URL: users.math.yale.edu

Download Document from Source Website

File Size: 225,49 KB

Share Document on Facebook

Similar Documents

Fractals / Mathematics / Mathematical analysis / Dimension / Fractal dimension / Variogram / Fractal landscape / Fractal / Hausdorff dimension / Self-similarity

MEASURING THE DIMENSION OF SURFACES: A REVIEW AND APPRAISAL OF DIFFERENT METHODS Andre G. Roy Ginette Gravel and Celine Gauthier

DocID: 1rcN5 - View Document

Fractals / Mathematics / Metaphysics / Mathematical analysis / Fractal / Scale invariance / Self-similarity / Power law / Emergence / Hausdorff dimension / Species distribution / Pattern

CHAPTER FIVE Geometry of species distributions: random clustering and scale invariance ARNOSˇ T L . Sˇ IZLING Charles University, Prague

DocID: 1qY72 - View Document

Cartography / Geography / Digital elevation model / Remote sensing / Landform / USGS DEM / Geographic information system / Fractal dimension / Topography / DEM / Physical geography / Open-geomorphometry project

Earth Surface Processes and Landforms Earth Surf. Process. Landforms 24, 763±COMPARISON OF SLOPE ESTIMATES FROM LOW RESOLUTION DEMS: SCALING ISSUES AND A FRACTAL METHOD FOR THEIR SOLUTION

DocID: 1qUTu - View Document

Mathematics / Geometry / Space / Cartography / Topology / Fractals / Dimension theory / Fractal dimension / Cartographic generalization / Fractal / Generalization / Topological map

OPTIMUM POINT DENSITY AND COMPACTION RATES FOR THE REPRESENTATION OF GEOGRAPHIC LINES J.-C. Muller University of Alberta Edmonton, Alberta, T6G 2H4 ABSTRACT

DocID: 1qJmL - View Document

Mathematical analysis / Fractals / Mathematics / Physics / Integral transforms / Joseph Fourier / Mathematical physics / Dimension theory / Fractal dimension / Fractal landscape / Spatial analysis / Fourier transform

SCALE-BASED SIMULATION OF TOPOGRAPHY Keith C. Clarke Hunter College 695 Park Avenue New York, NY 10021

DocID: 1qEPS - View Document