<--- Back to Details
First PageDocument Content
Matrices / Mathematics / Cryptography / MDS matrix / Matrix / Sparse matrices / Symmetric matrix / MDS / Coding theory / Numerical linear algebra
Date: 2018-04-23 01:39:02
Matrices
Mathematics
Cryptography
MDS matrix
Matrix
Sparse matrices
Symmetric matrix
MDS
Coding theory
Numerical linear algebra

Mixing Layers in Symmetric Crypto Ko Stoffelen Part I Shorter Linear Straight-Line Programs for MDS Matrices

Add to Reading List

Source URL: ko.stoffelen.nl

Download Document from Source Website

File Size: 361,81 KB

Share Document on Facebook

Similar Documents

Symmetric Indefinite Triangular Factorization Revealing the Rank Profile Matrix Jean-Guillaume Dumas, Cl´ement Pernet Universit´ e Grenoble Alpes, Laboratoire Jean Kuntzmann, UMR CNRS

Symmetric Indefinite Triangular Factorization Revealing the Rank Profile Matrix Jean-Guillaume Dumas, Cl´ement Pernet Universit´ e Grenoble Alpes, Laboratoire Jean Kuntzmann, UMR CNRS

DocID: 1xV4O - View Document

SYMMETRIC KRONECKER PRODUCTS AND SEMICLASSICAL WAVE PACKETS GEORGE A. HAGEDORN AND CAROLINE LASSER Abstract. We investigate the iterated Kronecker product of a square matrix with itself and prove an invariance property f

SYMMETRIC KRONECKER PRODUCTS AND SEMICLASSICAL WAVE PACKETS GEORGE A. HAGEDORN AND CAROLINE LASSER Abstract. We investigate the iterated Kronecker product of a square matrix with itself and prove an invariance property f

DocID: 1sfqQ - View Document

DATA COMPRESSION AND CRITICAL POINTS DETECTION USING NORMALIZED SYMMETRIC SCATTERED MATRIX Khagendra Thapa B.Sc. B.Sc(Hons) CNAA, M.Sc.E. M.S. Ph.D. Department of Surveying and MappingFenis State University Big Rapids, M

DATA COMPRESSION AND CRITICAL POINTS DETECTION USING NORMALIZED SYMMETRIC SCATTERED MATRIX Khagendra Thapa B.Sc. B.Sc(Hons) CNAA, M.Sc.E. M.S. Ph.D. Department of Surveying and MappingFenis State University Big Rapids, M

DocID: 1rAFN - View Document

9. Linear Algebra Po-Shen Loh CMU Putnam Seminar, Fall

9. Linear Algebra Po-Shen Loh CMU Putnam Seminar, Fall

DocID: 1rixu - View Document

Matrix polynomials and structured linearizations. Advisor: Maria Isabel Bueno Cachadina Let P (λ) = Ak λk + Ak−1 λk−1 + · · · + A0

Matrix polynomials and structured linearizations. Advisor: Maria Isabel Bueno Cachadina Let P (λ) = Ak λk + Ak−1 λk−1 + · · · + A0

DocID: 1rhAl - View Document