<--- Back to Details
First PageDocument Content
Geometry / Information geometry / Affine connection / Fisher information / Divergence / Geodesic / Manifold / Vector field / Vector space / Mathematics / Algebra / Differential geometry
Date: 2006-10-26 15:57:04
Geometry
Information geometry
Affine connection
Fisher information
Divergence
Geodesic
Manifold
Vector field
Vector space
Mathematics
Algebra
Differential geometry

Add to Reading List

Source URL: www.its.caltech.edu

Download Document from Source Website

File Size: 351,82 KB

Share Document on Facebook

Similar Documents

The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs – Space-Weather HMI Active Region Patches M. G. Bobra, X. Sun, J. T. Hoeksema, M. Turmon, Y. Liu, K. Hayashi,

DocID: 1vq8b - View Document

Classroom Voting Questions: Multivariable Calculus 18.4 Path-Dependent Vector Fields and Green’s Theorem 1. What will guarantee that F~ (x, y) = yˆi + g(x, y)ˆj is not a gradient vector field? (a) g(x, y) is a functi

DocID: 1v8ZZ - View Document

Logarithmic violation of scaling in strongly anisotropic turbulent transfer of a passive vector field.

DocID: 1uXqL - View Document

Classroom Voting Questions: Multivariable Calculus 19.2 Flux Integrals For Graphs, Cylinders, and Spheres 1. The flux of the vector field F~ = 4ˆ ρ through a sphere of radius 2 centered on the origin is:

DocID: 1uXlX - View Document

Classroom Voting Questions: Multivariable Calculus 20.1 The Divergence of a Vector Field 1. Moving from the picture on the left to the picture on the right, what are the signs of ∇ · F~ ?

DocID: 1uLvn - View Document