<--- Back to Details
First PageDocument Content
Module / Simple module / Torsion / Tensor product of modules / Annihilator / Finitely-generated module / Ideal / Bimodule / Injective module / Abstract algebra / Algebra / Module theory
Date: 2010-11-16 07:47:17
Module
Simple module
Torsion
Tensor product of modules
Annihilator
Finitely-generated module
Ideal
Bimodule
Injective module
Abstract algebra
Algebra
Module theory

Basic module theory October 14, [removed]Basic definitions

Add to Reading List

Source URL: www.math.ku.dk

Download Document from Source Website

File Size: 186,25 KB

Share Document on Facebook

Similar Documents

Sean Sather-Wagstaff and Richard Wicklein* (). Codualizing Complexes. Preliminary report. Let R be a commutative, noetherian ring. A finitely generated R-module C is said to be semd

DocID: 1vpxd - View Document

CATEGORIES AND HOMOLOGICAL ALGEBRA Exercises for April 26 Exercise 1. Let R be a principal ideal domain. If M is a finitely generated R-module, show that M is a projective R-module ⇐⇒ M is a free R-module ⇐⇒ M is

DocID: 1viEZ - View Document

Bounded regularity Claus Diem October 7, 2014 Abstract Let k be a field and S the polynomial ring k[x1 , . . . , xn ]. For a nontrivial finitely generated homogeneous S-module M with grading in Z, an integer D and some h

DocID: 1uabX - View Document

Algebra / Abstract algebra / Mathematics / Homological algebra / Module theory / Commutative algebra / Ring theory / Algebraic number theory / Tate module / Finitely generated module / Projective module / Integral element

573 Documenta Math. On the Structure of Selmer Groups of Λ-Adic Deformations over p-Adic Lie Extensions

DocID: 1qSFM - View Document

Algebra / Abstract algebra / Mathematics / Ring theory / Noncommutative ring / Semisimple module / Artinian ring / Ring / Matrix ring / Jacobson radical / Finitely generated module / Integral domain

A FLAVOUR OF NONCOMMUTATIVE ALGEBRA (PART 2) VIPUL NAIK Abstract. This is the second part of a two-part series intended to give the author and readers a flavour of noncommutative algebra. The material is related to topic

DocID: 1qnyA - View Document