<--- Back to Details
First PageDocument Content
Cardinal numbers / Axiom of choice / Function / Finite set / Axioms of set theory / Mathematical proof / Axiom schema of replacement / Cantor–Bernstein–Schroeder theorem / Mathematics / Mathematical logic / Set theory
Date: 2006-05-31 15:44:59
Cardinal numbers
Axiom of choice
Function
Finite set
Axioms of set theory
Mathematical proof
Axiom schema of replacement
Cantor–Bernstein–Schroeder theorem
Mathematics
Mathematical logic
Set theory

Add to Reading List

Source URL: www.math.dartmouth.edu

Download Document from Source Website

File Size: 201,21 KB

Share Document on Facebook

Similar Documents

Forcing / Ordinal number / Constructible universe / Function / Transfinite induction / Zermelo–Fraenkel set theory / Continuous function / Axiom of choice / Axiom schema of replacement / Mathematical logic / Mathematics / Set theory

VOL. 50, 1963 MATHEMATICS: P. J. COHEN 1143

DocID: 19AfN - View Document

Functions and mappings / Function / Axiom schema of replacement / First-order logic / Equivalence relation / Model theory / Μ operator / Primitive recursive function / Mathematics / Mathematical logic / Logic

A ‘theory’ mechanism for a proof-verifier based on first-order set theory ? Eugenio G. Omodeo1 and Jacob T. Schwartz2 1 2

DocID: 11BAH - View Document

Functions and mappings / Function / Axiom schema of replacement / First-order logic / Equivalence relation / Model theory / Μ operator / Primitive recursive function / Mathematics / Mathematical logic / Logic

A ‘theory’ mechanism for a proof-verifier based on first-order set theory ? Eugenio G. Omodeo1 and Jacob T. Schwartz2 1 2

DocID: WIyD - View Document

Mathematical analysis / Bijection /  injection and surjection / Equivalence relation / Function / Bijection / Power set / Injective function / Filter / Axiom schema of replacement / Mathematics / Functions and mappings / Mathematical logic

COMPUTER SCIENCE TRIPOS Part IA – 2014 – Paper 2 8 Discrete Mathematics (MPF) (a) Let #X denote the cardinality of a set X. Define a unary predicate P for which the statement

DocID: QCxs - View Document

Set theory / Ordinal number / Axiom schema of replacement / Reflection principle / Forcing / Model theory / Mathematical logic / Mathematics / Constructible universe

Axiomatic Set Theory: Problem sheet[removed]Prove that ∀α, β ∈ On, (i) Vα ∩ On = α, and (ii) if α ∈ Vβ , then Vα ∈ Vβ . 2. Complete the proof of L´evy’s Reflection Principle. 3. A club is, by definiti

DocID: 9skn - View Document