Finite field

Results: 571



#Item
1Computational Methods 14-04, 14Qxx [1] Fatima K. Abu Salem and Kamal Khuri-Makdisi, Fast Jacobian group operations for C3,4 curves over a large finite field, LMS J. Comput. Math), 307–328 (electronic). MR MR2

Computational Methods 14-04, 14Qxx [1] Fatima K. Abu Salem and Kamal Khuri-Makdisi, Fast Jacobian group operations for C3,4 curves over a large finite field, LMS J. Comput. Math), 307–328 (electronic). MR MR2

Add to Reading List

Source URL: magma.maths.usyd.edu.au

Language: English
    2FINITE FIELDS KEITH CONRAD This handout discusses finite fields: how to construct them, properties of elements in a finite field, and relations between different finite fields. We write Z/(p) and Fp interchangeably for t

    FINITE FIELDS KEITH CONRAD This handout discusses finite fields: how to construct them, properties of elements in a finite field, and relations between different finite fields. We write Z/(p) and Fp interchangeably for t

    Add to Reading List

    Source URL: www.math.uconn.edu

    Language: English - Date: 2018-02-04 15:14:04
      3MATH 205 (TOPICS IN ALGEBRAIC NUMBER THEORY) - SPRINGProfessor: Cristian D. Popescu Course Topic: Global Fields Course Description: The main goal of this course is to understand global fields (finite field extensi

      MATH 205 (TOPICS IN ALGEBRAIC NUMBER THEORY) - SPRINGProfessor: Cristian D. Popescu Course Topic: Global Fields Course Description: The main goal of this course is to understand global fields (finite field extensi

      Add to Reading List

      Source URL: www.math.ucsd.edu

      Language: English - Date: 2013-03-11 21:56:25
        4FINITE GROUP SCHEMES OVER BASES WITH LOW RAMIFICATION BRIAN CONRAD Abstract. Let A0 be a complete characteristic (0, p) discrete valuation ring with absolute ramification degree e and a perfect residue field. We are inte

        FINITE GROUP SCHEMES OVER BASES WITH LOW RAMIFICATION BRIAN CONRAD Abstract. Let A0 be a complete characteristic (0, p) discrete valuation ring with absolute ramification degree e and a perfect residue field. We are inte

        Add to Reading List

        Source URL: math.stanford.edu

        Language: English - Date: 2004-08-10 17:19:57
          5Pseudorandom generators for low degree polynomials Andrej Bogdanov∗ March 3, 2005 Abstract We investigate constructions of pseudorandom generators that fool polynomial tests of degree d in m variables over finite field

          Pseudorandom generators for low degree polynomials Andrej Bogdanov∗ March 3, 2005 Abstract We investigate constructions of pseudorandom generators that fool polynomial tests of degree d in m variables over finite field

          Add to Reading List

          Source URL: www.cse.cuhk.edu.hk

          Language: English - Date: 2008-09-12 03:56:12
            6March 24, 1974  Dear Roger, You observed to me several years ago that a cuspidal representation of a Chevalley group G over a finite field oF /pF yielded by induction an absolutely cuspidal representation over the local

            March 24, 1974 Dear Roger, You observed to me several years ago that a cuspidal representation of a Chevalley group G over a finite field oF /pF yielded by induction an absolutely cuspidal representation over the local

            Add to Reading List

            Source URL: sunsite.ubc.ca

            Language: English - Date: 2001-05-12 20:20:10
              7The Id`ele Class Group Hendrik Lenstra 1. Definitions Let K be an algebraic number field. Let p be a prime of K. We denote by Kp the completion of K at the prime p: if p is a finite place, then Kp is a non-archimedean

              The Id`ele Class Group Hendrik Lenstra 1. Definitions Let K be an algebraic number field. Let p be a prime of K. We denote by Kp the completion of K at the prime p: if p is a finite place, then Kp is a non-archimedean

              Add to Reading List

              Source URL: websites.math.leidenuniv.nl

              Language: English - Date: 2005-10-10 10:30:10
                8ON A QUESTION OF BOMBIERI AND BOURGAIN NICHOLAS M. KATZ 1. Introduction and statement of the main results Let k be a finite field, p its characteristic, and ψ : (k, +) → Z[ζp ]× ⊂ C×

                ON A QUESTION OF BOMBIERI AND BOURGAIN NICHOLAS M. KATZ 1. Introduction and statement of the main results Let k be a finite field, p its characteristic, and ψ : (k, +) → Z[ζp ]× ⊂ C×

                Add to Reading List

                Source URL: web.math.princeton.edu

                Language: English - Date: 2008-07-14 19:30:47
                  9INERTIA GROUPS AND FIBERS BRIAN CONRAD Let K be a global field and X, Y two proper, connected K-schemes, with X normal and Y regular. Let f : X → Y be a finite, flat, generically Galois K-morphism which is tamely ramif

                  INERTIA GROUPS AND FIBERS BRIAN CONRAD Let K be a global field and X, Y two proper, connected K-schemes, with X normal and Y regular. Let f : X → Y be a finite, flat, generically Galois K-morphism which is tamely ramif

                  Add to Reading List

                  Source URL: math.stanford.edu

                  Language: English - Date: 2004-08-10 17:02:45
                    10ON A QUESTION OF BROWNING AND HEATH-BROWN NICHOLAS M. KATZ 1. Introduction, and statement of the main result Let k be a finite field, p its characteristic, and

                    ON A QUESTION OF BROWNING AND HEATH-BROWN NICHOLAS M. KATZ 1. Introduction, and statement of the main result Let k be a finite field, p its characteristic, and

                    Add to Reading List

                    Source URL: web.math.princeton.edu

                    Language: English - Date: 2007-02-04 09:38:51