<--- Back to Details
First PageDocument Content
Triangle geometry / Triangle / Fermat point / Golden ratio / Mathematical fallacy / Special right triangles / Altitude / Area / Fibonacci number / Geometry / Triangles / Euclidean geometry
Date: 2006-02-17 10:50:16
Triangle geometry
Triangle
Fermat point
Golden ratio
Mathematical fallacy
Special right triangles
Altitude
Area
Fibonacci number
Geometry
Triangles
Euclidean geometry

Original Problems Proposed by Stanley Rabinowitz 1963–2005

Add to Reading List

Source URL: www.mathpropress.com

Download Document from Source Website

File Size: 304,85 KB

Share Document on Facebook

Similar Documents

Triangle geometry / Calculus / Continuous function / Triangle / Equilateral triangle / Bernhard Riemann / Mathematical analysis / Fermat point / Limit of a function

TAKE-HOME CLASS QUIZ: DUE FRIDAY MARCH 1: MAX/MIN VALUES: ONE-VARIABLE RECALL MATH 195, SECTION 59 (VIPUL NAIK) Your name (print clearly in capital letters): YOU ARE FREE TO DISCUSS ALL QUESTIONS, BUT PLEASE ONLY ENTER F

DocID: 1pqGC - View Document

Triangulation / Self-dual polyhedra / Tetrahedron / Delaunay triangulation / Triangle / Equilateral triangle / Circumscribed circle / Fermat point / Geometry / Triangles / Triangle geometry

CCCG 2011, Toronto ON, August 10–12, 2011 Point Location in Well-Shaped Meshes Using Jump-and-Walk∗ Jean-Lou De Carufel† Craig Dillabaugh‡

DocID: 18uZa - View Document

Linear algebra / Triangle inequality / Circle / Sphere / Delaunay triangulation / Triangle / Differential geometry of surfaces / Fermat point / Geometry / Metric geometry / Triangles

CCCG 2014, Halifax, Nova Scotia, August 11–13, 2014 The Convex Hull of Points on a Sphere is a Spanner∗ Prosenjit Bose† Simon Pratt‡

DocID: 17ZoE - View Document

Projection / Fermat point / Valuation / Trigonometric functions / Pi / Homotopy groups of spheres / Mathematics / Mathematical analysis / Abstract algebra

The Projection Median of a Set of Points in R2 Stephane Durocher∗ David Kirkpatrick† Kimberling triangle centre X], or any combination of Fermat-Steiner-Torricelli-Weber point. An

DocID: 17StW - View Document

Triangulation / Self-dual polyhedra / Tetrahedron / Delaunay triangulation / Triangle / Equilateral triangle / Circumscribed circle / Fermat point / Geometry / Triangles / Triangle geometry

CCCG 2011, Toronto ON, August 10–12, 2011 Point Location in Well-Shaped Meshes Using Jump-and-Walk∗ Jean-Lou De Carufel† Craig Dillabaugh‡

DocID: 17Shf - View Document