<--- Back to Details
First PageDocument Content
Numbers / Prime number / Lucas number / Parity / Fibonacci prime / Mathematics / Fibonacci numbers / Integer sequences
Date: 2014-10-09 14:30:31
Numbers
Prime number
Lucas number
Parity
Fibonacci prime
Mathematics
Fibonacci numbers
Integer sequences

Add to Reading List

Source URL: www.tanyakhovanova.com

Download Document from Source Website

File Size: 103,29 KB

Share Document on Facebook

Similar Documents

Zeckendorf family identities generalized Darij Grinberg June 11, 2018, brief version Abstract. In [WooZei09], Philip Matchett Wood and Doron Zeilberger have constructed identities for the Fibonacci numbers f n of the for

DocID: 1v9pc - View Document

Annales Mathematicae et Informaticaepp. 219–234 Proceedings of the 15th International Conference on Fibonacci Numbers and Their Applications Institute of Mathematics and Informatics, Eszterházy Károly Coll

DocID: 1uCl5 - View Document

THE NUMBER OF k-DIGIT FIBONACCI NUMBERS JAN-CHRISTOPH PUCHTA Define a(k) to be the number of k-digit Fibonacci numbers. For n > 5, we have 1.6Fn−1 < Fn < 1.7Fn−1 . Thus if Fn is the least k-digit Fibonacci number, we

DocID: 1uaXr - View Document

Annales Mathematicae et Informaticaepp. 175–192 Proceedings of the 15th International Conference on Fibonacci Numbers and Their Applications Institute of Mathematics and Informatics, Eszterházy Károly Coll

DocID: 1rCEx - View Document

Mathematics / Mathematical analysis / Fibonacci numbers / Fibonacci prime / Fibonacci / Prime number / Golden ratio / Pi / Twin prime / Sequence / Irrational number / Generalizations of Fibonacci numbers

Torino, Pagina 1 di 25 THE SUM OF RECIPROCAL FIBONACCI PRIME NUMBERS CONVERGES TO A NEW CONSTANT: MATHEMATICAL CONNECTIONS WITH SOME SECTORS OF EINSTEIN’S FIELD EQUATIONS AND STRING THEORY

DocID: 1qvmX - View Document