<--- Back to Details
First PageDocument Content
Thermodynamics / State functions / Thermodynamic entropy / Statistical mechanics / Josiah Willard Gibbs / Entropy / Albert Einstein / Statistical ensemble / Canonical ensemble / Physics / Science / Philosophy of thermal and statistical physics
Date: 2012-02-09 03:42:34
Thermodynamics
State functions
Thermodynamic entropy
Statistical mechanics
Josiah Willard Gibbs
Entropy
Albert Einstein
Statistical ensemble
Canonical ensemble
Physics
Science
Philosophy of thermal and statistical physics

Arch. Hist. Exact Sci[removed]–180. c Springer-Verlag[removed]Gibbs, Einstein and the Foundations

Add to Reading List

Source URL: www.ffn.ub.es

Download Document from Source Website

File Size: 190,85 KB

Share Document on Facebook

Similar Documents

Development and Performance of a Statistical-Dynamical Ensemble Technique for Tropical Cyclone Intensity Guidance Kate D. Musgrave1 and Mark DeMaria2 1CIRA/CSU,

DocID: 1vopV - View Document

STATISTICAL POST-PROCESSING FOR HURRICANE ENSEMBLE FORECASTING Zoltan Toth, Roman Krzysztofowicz1, and Tom Hamill ESRL/OAR/NOAA 1 Univeristy

DocID: 1uJVS - View Document

Predictive Analytics Using Statistical, Learning, and Ensemble Methods to Support Real-Time Exploration of Discrete Event Simulations Walid Budgagaa , Matthew Malenseka , Sangmi Pallickaraa , Neil Harveyb , F. Jay Breidt

DocID: 1uyb6 - View Document

Prediction / Physical geography / Weather forecasting / Academia / Statistical forecasting / Hydrology / Climate modeling / Flood forecasting / Ensemble forecasting / Forecast verification / Numerical weather prediction / National Weather Service

2016 HEPEX Workshop, Quebec, Canada Ensemble for better hydrological forecasts Day 1: 6 June: Registration and coffee

DocID: 1rkoJ - View Document

Artificial intelligence / Statistics / Machine learning / Model selection / Statistical classification / Ensemble learning / Hyperparameter optimization / Mathematical optimization / Support vector machine / Boosting / Deep learning / Weka

Efficient and Robust Automated Machine Learning Matthias Feurer Aaron Klein Katharina Eggensperger Jost Tobias Springenberg

DocID: 1rkhg - View Document