<--- Back to Details
First PageDocument Content
Numerical linear algebra / Matrices / Matrix theory / Linear algebra / QR decomposition / Cholesky decomposition / QR algorithm / LU decomposition / Orthogonal matrix / Matrix / Factorization / Singular value decomposition
Date: 2015-06-12 14:04:34
Numerical linear algebra
Matrices
Matrix theory
Linear algebra
QR decomposition
Cholesky decomposition
QR algorithm
LU decomposition
Orthogonal matrix
Matrix
Factorization
Singular value decomposition

Add to Reading List

Source URL: www.cs.berkeley.edu

Download Document from Source Website

File Size: 267,96 KB

Share Document on Facebook

Similar Documents

Algebra / Linear algebra / Mathematics / Numerical linear algebra / Sparse matrices / Matrix theory / Matrices / Singular value decomposition / Bidiagonalization / Bidiagonal matrix / QR algorithm / Orthogonal matrix

Computing the Complete CS Decomposition Brian D. Sutton∗ May 20, 2008 Abstract An algorithm for computing the complete CS decomposition of a partitioned unitary matrix is developed. Although the existence of the CS dec

DocID: 1qWf4 - View Document

Algebra / Linear algebra / Mathematics / Numerical linear algebra / LU decomposition / Matrix / Block matrix / Rank / QR algorithm

Implementing a Blocked Aasen’s Algorithm with a Dynamic Scheduler on Multicore Architectures Grey Ballard∗ , Dulceneia Becker† , James Demmel∗ , Jack Dongarra†‡§ Alex Druinsky¶ , Inon Peled¶ , Oded Schwart

DocID: 1q2BR - View Document

Numerical linear algebra / Apache Spark / Matrix / Basic Linear Algebra Subprograms / Singular value decomposition / Lanczos algorithm / Rank / ARPACK / LAPACK / Linear algebra / Sparse matrix / QR decomposition

Matrix Computations and Optimization in Apache Spark ∗ Reza Bosagh Zadeh Xiangrui Meng

DocID: 1pxzg - View Document

Numerical linear algebra / Mathematical physics / Matrix theory / Linear algebra / QR algorithm / Eigenvalues and eigenvectors / Matrix / Determinant / Generalized minimal residual method / Random matrix / Rotation matrix / Eigenvalue algorithm

Universality in Numerical Computations with Random Data. Case Studies. Percy Deift∗, Govind Menon†, Sheehan Olver‡and Thomas Trogdon∗ July 16, 2014 Abstract

DocID: 1paqc - View Document

Matrices / Symmetric matrix / QR algorithm / Isospectral / Diagonalizable matrix / Logarithm of a matrix / Skew-symmetric matrix / Orthogonal matrix / Eigenvalues and eigenvectors / Matrix / QR decomposition / Positive-definite matrix

Isospectral Flows and The Toeplitz Inverse Eigenvalue Problem Author: Marcus Webb Supervisor: Arieh Iserles

DocID: 1oFxu - View Document