<--- Back to Details
First PageDocument Content
Preconditioner / Sparse matrix / Conjugate gradient method / Cholesky decomposition / Lis / Multigrid method / QR decomposition / LU decomposition / Incomplete LU factorization / Numerical linear algebra / Numerical analysis / Mathematics
Date: 2012-04-17 03:51:43
Preconditioner
Sparse matrix
Conjugate gradient method
Cholesky decomposition
Lis
Multigrid method
QR decomposition
LU decomposition
Incomplete LU factorization
Numerical linear algebra
Numerical analysis
Mathematics

Sparse Approximate Inverse Preconditioners for Iterative Solvers on GPUs

Add to Reading List

Source URL: www.iue.tuwien.ac.at

Download Document from Source Website

File Size: 125,45 KB

Share Document on Facebook

Similar Documents

New algorithm for Cholesky Decomposition

DocID: 1uToZ - View Document

Mathematics / Mathematical analysis / Numerical analysis / Numerical linear algebra / Mathematical optimization / Operations research / Bundle adjustment / Geodesy / Surveying / Gradient descent / Preconditioner / Cholesky decomposition

g2o: A General Framework for Graph Optimization Rainer K¨ummerle Giorgio Grisetti Hauke Strasdat

DocID: 1rqHa - View Document

Numerical linear algebra / Algebra / Linear algebra / Numerical analysis / Parallel computing / Matrix / Sparse matrix / LU decomposition / Basic Linear Algebra Subprograms / Data parallelism / Cholesky decomposition / General-purpose computing on graphics processing units

1 Factorization-based Sparse Solvers and Preconditioners (4th Gene Golub SIAM Summer School, 2013)

DocID: 1qE4r - View Document

Computing / Numerical linear algebra / Parallel computing / Numerical analysis / Computer architecture / GPGPU / Numerical software / Graphics hardware / Graphics processing unit / Cholesky decomposition / Basic Linear Algebra Subprograms / LAPACK

Dynamically scheduled Cholesky factorization on multicore architectures with GPU accelerators. Emmanuel Agullo, C´edric Augonnet, Jack Dongarra, Hatem Ltaief, Raymond Namyst, Jean Roman, Samuel Thibault, Stanimire Tomov

DocID: 1qb5g - View Document

Algebra / Linear algebra / Mathematics / Numerical linear algebra / Basic Linear Algebra Subprograms / General-purpose computing on graphics processing units / Cholesky decomposition / LAPACK / Matrix / Fermi / LU decomposition / Compute kernel

On the Development of Variable Size Batched Computation for Heterogeneous Parallel Architectures Ahmad Abdelfattah∗ , Azzam Haidar∗ , Stanimire Tomov∗ , Jack Dongarra∗†‡ {ahmad,haidar,tomov,dongarra}@icl.utk.

DocID: 1qaF3 - View Document