<--- Back to Details
First PageDocument Content
Systems theory / Estimation theory / Bayesian statistics / Linear filters / Robot control / Data assimilation / Kalman filter / Normal distribution / Vehicle Identification Number / Statistics / Control theory / Cybernetics
Date: 2009-05-23 19:00:12
Systems theory
Estimation theory
Bayesian statistics
Linear filters
Robot control
Data assimilation
Kalman filter
Normal distribution
Vehicle Identification Number
Statistics
Control theory
Cybernetics

IMPROVING THE PARAMETERIZATION OF  ERRORS STATISTICS FOR DATA  ASSIMILATION IN A HYCOM BAY OF  BISCAY REGIONAL CONFIGURATION P. BRASSEUR, G. BROQUET, J.M. BRANKART, F. CASTRUCCIO,  C. LAUVERNET 

Add to Reading List

Source URL: hycom.org

Download Document from Source Website

File Size: 3,36 MB

Share Document on Facebook

Similar Documents

Constraining regional-scale CO2 fluxes using a coupled meteorological–carbon ensemble Kalman filter Hans W. Chen, Fuqing Zhang, Thomas Lauvaux, Richard B. Alley, and Kenneth J. Davis

DocID: 1vaGB - View Document

Tina Memo NoInternal. Tutorial: The Likelihood Interpretation of the Kalman Filter. N.A.Thacker, A.J.Lacey.

DocID: 1v1Tg - View Document

High-rank Ensemble Transform Kalman Filter (HETKF) Bo Huang and Xuguang Wang Multi-scale data Assimilation and Predictability (MAP) Laboratory School of Meteorology, University of Oklahoma, Norman, OK

DocID: 1uOhU - View Document

A Stabilized Dual Kalman Filter for Adaptive Tracking of Brain-Computer Interface Decoding Parameters

DocID: 1uL66 - View Document

Progress toward estimating surface carbon dioxide fluxes at the regional scale using an augmented Ensemble Kalman Filter 1,2 Hans W. Chen

DocID: 1uJvA - View Document