<--- Back to Details
First PageDocument Content
Number theory / Analytic number theory / Algebraic number theory / Jacobi sum / Euclidean plane geometry / Gauss sum / Carl Friedrich Gauss / Kloosterman sum / Exponential sum / Mathematics / Abstract algebra / Cyclotomic fields
Date: 2008-06-04 08:24:23
Number theory
Analytic number theory
Algebraic number theory
Jacobi sum
Euclidean plane geometry
Gauss sum
Carl Friedrich Gauss
Kloosterman sum
Exponential sum
Mathematics
Abstract algebra
Cyclotomic fields

Add to Reading List

Source URL: www.math.ucsd.edu

Download Document from Source Website

File Size: 59,19 KB

Share Document on Facebook

Similar Documents

Number theory / Mathematics / Cyclotomic fields / Discrete mathematics / Analytic number theory / Gauss sum / Kloosterman sum / Equidistribution theorem / FP / Computability theory

Convolution and Equidistribution: Sato-Tate Theorems for Finite-field Mellin Transforms Nicholas M. Katz Princeton University Press Princeton and Oxford

DocID: 1r18Y - View Document

Polynomials / Cyclotomic fields / Field theory / Algebraic numbers / Algebraic number theory / Gaussian period / Quadratic Gauss sum / Cyclotomic polynomial / Root of unity / Polynomial ring / Algebraic integer / Algebraic number field

Fast Computation of Gauss Sums and Resolution of the Root of Unity Ambiguity Dang Khoa Nguyen Division of Mathematical Sciences School of Physical & Mathematical Sciences Nanyang Technological University

DocID: 1o2Pz - View Document

Class field theory / Algebraic number theory / Symbol / Character theory / Conductor / Algebraic number field / Gauss sum / Dirichlet L-function / Abstract algebra / Algebra / Dirichlet character

Class Field Theory Anna Haensch Spring 2012 These are my own notes put together from a reading of “Class Field Theory” by N. Childress [1], along with other references, [2], [4], and [6].

DocID: 1gB5q - View Document

Class field theory / Cyclotomic fields / Dirichlet character / Gauss sum / Character sum / Conductor / Artin reciprocity law / Modular arithmetic / Dirichlet L-function / Abstract algebra / Mathematics / Number theory

The Polya-Vinogradov inequality Jordan Bell Department of Mathematics, University of Toronto April 3, 2014 Let χ : Z → C be a primitive Dirichlet character modulo m. χ being a

DocID: 1861p - View Document

Kloosterman sum / Continued fraction / Carl Friedrich Gauss / Pi / Number / Mathematical analysis / Mathematics / Analytic number theory

Why do we need Gauss — Kuz’min statistics? Alexey Ustinov Institute of Applied Mathematics (Khabarovsk) Russian Academy of Sciences (Far Eastern Branch) July 7, 2011

DocID: 11Rxr - View Document