<--- Back to Details
First PageDocument Content
Abstract algebra / Mathematics / Mathematical analysis / Operator theory / Finite fields / Exponential map / Exponentials / Riemannian geometry
Date: 2010-03-23 08:47:22
Abstract algebra
Mathematics
Mathematical analysis
Operator theory
Finite fields
Exponential map
Exponentials
Riemannian geometry

ACTA ARITHMETICA[removed]On the smallest pseudopower by

Add to Reading List

Source URL: www.math.dartmouth.edu

Download Document from Source Website

File Size: 182,54 KB

Share Document on Facebook

Similar Documents

99 Documenta Math. Bloch and Kato’s Exponential Map: Three Explicit Formulas

DocID: 1rZ14 - View Document

Topology / Geometry / Space / Riemannian geometry / Differential geometry / Geometric topology / Differential geometry of surfaces / 3-manifold / Topological space / Exponential map / Minimal surface / Riemannian manifold

arXiv:1505.06764v2 [math.DG] 9 NovFinite topology minimal surfaces in homogeneous three-manifolds William H. Meeks III∗

DocID: 1rnI1 - View Document

Algebra / Mathematics / Linear algebra / Kernel / Linear map / Field extension / Vector space / Fredholm alternative

On systems of exponential sums with real exponents Boris Zilber April 18, 2011 In [Z2] we studied the theory of formal exponentiation (raising to powers) and proved that it is very nice (superstable

DocID: 1qP8y - View Document

Field theory / Ring theory / Number theory / Algebraic geometry / Commutative algebra / Valuation / P-adic Hodge theory / P-adic number / Witt vector / Ring / Symbol

99 Documenta Math. Bloch and Kato’s Exponential Map: Three Explicit Formulas

DocID: 1pERy - View Document

Riemannian geometry / Differential geometry / Connection / Curvature / Bernhard Riemann / Finsler manifold / Differential geometry of surfaces / Geodesic / Exponential map / Sectional curvature / Torsion tensor / Metric tensor

A Sphere Theorem for non-reversible Finsler Metrics∗ Hans-Bert Rademacher †

DocID: 1pvYK - View Document