<--- Back to Details
First PageDocument Content
Mathematical analysis / Logarithms / Exponential growth / Exponential function / Doubling time / Logarithm / Log-log plot / Semi-log plot / Natural logarithm / Special functions / Mathematics / Exponentials
Date: 2006-05-23 18:08:37
Mathematical analysis
Logarithms
Exponential growth
Exponential function
Doubling time
Logarithm
Log-log plot
Semi-log plot
Natural logarithm
Special functions
Mathematics
Exponentials

Add to Reading List

Source URL: www.ocean.washington.edu

Download Document from Source Website

File Size: 158,56 KB

Share Document on Facebook

Similar Documents

Physics / Nature / Academia / Petroleum production / Well logging / Soil mechanics / Soil physics / Physical quantities / Petrophysics / Resistivity logging / Cross-plot / Porosity

Log Property Comparison to Seismic Amplitude Analysis, Ness County, Kansas Eric Swanson December 2011

DocID: 1qPeK - View Document

Special functions / Mathematics / Mathematical analysis / Logarithms / Loglog plot / Exponentiation / Conjectures / Prime number theorem / Quantum relative entropy

Smooth number estimates Rome, January 2009 Lemma. Let a ∈ R>0 and let φa : R>0 −→ R be the function given by φa (x) = x log x +

DocID: 1qEHx - View Document

Technical drawing / Matter / Graph paper / Printing and writing paper / Loglog plot / Logarithm / Semi-log plot / Steam / Engineering / Measurement

Microsoft Word - IS Codes.docx

DocID: 1pNIn - View Document

Microarrays / Statistical inference / Gene expression / DNA / DNA microarray / Microtechnology / Plot / Microarray databases / Log-normal distribution / Shape parameter / Estimation theory / Nonparametric statistics

280 Genome Informatics 13: 280–Parametric Treatment of cDNA Microarray Data Tomokazu Konishi

DocID: 1pzkQ - View Document

Probability distributions / Statistical inference / Statistical tests / Distribution fitting / Shape parameter / Log-normal distribution / QQ plot / Goodness of fit / Normal distribution / Statistics / KolmogorovSmirnov test / Bootstrapping

1 Are the discretised lognormal and hooked power law distributions plausible for citation data? Mike Thelwall, Statistical Cybermetrics Research Group, University of Wolverhampton, UK. There is no agreement over which s

DocID: 1otNc - View Document