<--- Back to Details
First PageDocument Content
Estimation theory / Categorical data / Single equation methods / Discrete choice / Mixed logit / Expectation–maximization algorithm / Logit / Multinomial logit / Kenneth E. Train / Statistics / Regression analysis / Statistical models
Date: 2012-09-20 12:09:22
Estimation theory
Categorical data
Single equation methods
Discrete choice
Mixed logit
Expectation–maximization algorithm
Logit
Multinomial logit
Kenneth E. Train
Statistics
Regression analysis
Statistical models

Add to Reading List

Source URL: www.clevelandfed.org

Download Document from Source Website

File Size: 387,50 KB

Share Document on Facebook

Similar Documents

Semiparametric estimation of multinomial discrete-choice models using a subset of choices

DocID: 1v4Nf - View Document

Optimally Discriminative Choice Sets in Discrete Choice Models: Application to Data-Driven Test Design Igor Labutov Frans Schalekamp

DocID: 1t4G6 - View Document

Towards using Discrete Choice Experiment in modelling building retrofit Jill MADELENAT1 Abstract Buildings are the largest energy consumer both at the international and at the French levels.

DocID: 1rIMn - View Document

Economy / Economics / Business / Choice modelling / Pricing / Single-equation methods / Statistical models / Scientific modeling / Discrete choice / Service / Delivery / Post-office box

  swiss economics    

DocID: 1rjOn - View Document

Statistics / Regression analysis / Categorical data / Actuarial science / Logit / Statistical models / NLOGIT / Logistic regression / Discrete choice

On the Equivalence of Location Choice Models: Conditional Logit, Nested Logit and Poisson∗ Kurt Schmidheiny‡ Marius Br¨

DocID: 1r4gy - View Document