<--- Back to Details
First PageDocument Content
Mathematics / Maximum likelihood / Mathematical optimization / Likelihood function / Conjugate gradient method / Gradient descent / Quasi-Newton method / Expectation–maximization algorithm / CMA-ES / Numerical analysis / Statistics / Estimation theory
Date: 2004-05-21 20:39:26
Mathematics
Maximum likelihood
Mathematical optimization
Likelihood function
Conjugate gradient method
Gradient descent
Quasi-Newton method
Expectation–maximization algorithm
CMA-ES
Numerical analysis
Statistics
Estimation theory

Add to Reading List

Source URL: acl.ldc.upenn.edu

Download Document from Source Website

File Size: 62,13 KB

Share Document on Facebook

Similar Documents

Likelihood Function .... Method of Moments ...........

DocID: 1vn7a - View Document

NOISE ROBUST SPEECH RECOGNITION USING GAUSSIAN BASIS FUNCTIONS FOR NON-LINEAR LIKELIHOOD FUNCTION APPROXIMATION Chris Pal½ ¾ , Brendan Frey½ ¾ and Trausti Kristjansson ½ ¾ ½ ¾

DocID: 1uuy9 - View Document

The shape of the one-dimensional phylogenetic likelihood function

DocID: 1u9Og - View Document

Is Bayes posterior just quick and dirty confidence? D.A.S. Fraser March 9, 2009 Abstract Bayesintroduced the observed likelihood function to statistical inference and provided a weight function to calibrate the p

DocID: 1t5Vr - View Document

On the Application of Automatic Differentiation to the Likelihood Function for Dynamic General Equilibrium Models

DocID: 1ryLK - View Document