<--- Back to Details
First PageDocument Content
Stochastic optimization / Measurement / Natural evolution strategy / Fisher information / Expectation–maximization algorithm / CMA-ES / Dimensional analysis / Parametric model / Maximum likelihood / Statistics / Estimation theory / Evolutionary algorithms
Date: 2011-08-30 09:40:37
Stochastic optimization
Measurement
Natural evolution strategy
Fisher information
Expectation–maximization algorithm
CMA-ES
Dimensional analysis
Parametric model
Maximum likelihood
Statistics
Estimation theory
Evolutionary algorithms

Add to Reading List

Source URL: www.idsia.ch

Download Document from Source Website

File Size: 248,28 KB

Share Document on Facebook

Similar Documents

Numerical analysis / Dynamical systems / Classical mechanics / Hamiltonian mechanics / Symplectic integrator / Mathematical optimization / Gradient descent / Leapfrog integration / Bregman Lagrangian / Lagrangian mechanics / Bregman divergence

Dynamical, Symplectic and Stochastic Perspectives on Gradient-Based Optimization Michael I. Jordan University of California, Berkeley March 3, 2018

DocID: 1xVqC - View Document

ECEFallSyllabus Robust and Stochastic Optimization

DocID: 1vpB0 - View Document

EE266 and MS&E251: Introduction About the course Optimization Dynamical systems Stochastic control

DocID: 1vkoK - View Document

Stochastic Maximum Likelihood Optimization via Hypernetworks Abdul-Saboor Sheikh, Kashif Rasul, Andreas Merentitis & Urs Bergmann {saboor.sheikh, kashif.rasul, urs.bergmann}@zalando.de

DocID: 1vg3V - View Document

Scenario generation for stochastic optimization problems via the sparse grid method ∗ Michael Chen† Sanjay Mehrotra‡

DocID: 1vfTO - View Document