<--- Back to Details
First PageDocument Content
Helices / Angle / Dihedral angle / Dihedral group / Dihedral / Pi helix / Geometry / Protein structure / Euclidean geometry
Date: 2010-09-03 13:54:32
Helices
Angle
Dihedral angle
Dihedral group
Dihedral
Pi helix
Geometry
Protein structure
Euclidean geometry

Development of Physically Reasonable Protein Structures

Add to Reading List

Source URL: www.ncnr.nist.gov

Download Document from Source Website

File Size: 3,96 MB

Share Document on Facebook

Similar Documents

Introduction What is constructive geometry? IEGC (Intuitionistic Euclidean Constructive Geometry) Connections to Field Theory Field theory and the parallel postulate Independence results

DocID: 1tdMr - View Document

Herbrand’s theorem and non-Euclidean geometry Michael Beeson, Pierre Boutry, Julien Narboux To cite this version: Michael Beeson, Pierre Boutry, Julien Narboux. Herbrand’s theorem and non-Euclidean geometry. Bulletin

DocID: 1t313 - View Document

Geometry / Mathematics / Space / Linear algebra / Euclidean geometry / Ham sandwich theorem / Hyperplane

The hamburger theorem Mikio Kano and Jan Kynˇcl EPFL Problem: Given n red and n blue points in the plane in general position, draw n

DocID: 1rrZJ - View Document

Surfaces / Differential geometry of surfaces / Topology / Space / Mathematics / Differential geometry / Differential topology / Analytic geometry / Gaussian curvature

Singularities of the asymptotic completion of developable M¨obius strips Kosuke Naokawa Email: Let U be an open domain in Euclidean two-space R2 and f : U −→ R3 a C ∞ map. A point p ∈ U

DocID: 1rq0Q - View Document

Geometry / Euclidean geometry / Convex geometry / Cubes / Space-filling polyhedra / Volume / Zonohedra

Simplot_FinalLogo_FullColor

DocID: 1rprR - View Document