<--- Back to Details
First PageDocument Content
Online codes / Erasure code / Tornado code / Error detection and correction / Reed–Solomon error correction / Degree distribution / Luby transform code / Fountain code / Coding theory / Discrete mathematics / Mathematics
Date: 2004-01-06 13:24:25
Online codes
Erasure code
Tornado code
Error detection and correction
Reed–Solomon error correction
Degree distribution
Luby transform code
Fountain code
Coding theory
Discrete mathematics
Mathematics

Add to Reading List

Source URL: cs.nyu.edu

Download Document from Source Website

File Size: 212,37 KB

Share Document on Facebook

Similar Documents

1 On-Line Fountain Codes with Low Overhead Yuval Cassuto, Senior Member, IEEE, and Amin Shokrollahi, Fellow, IEEE Abstract— An on-line fountain code is defined as a fountain code for which an optimal encoding strategy

DocID: 1mHdf - View Document

Coding theory / Computing / Broadcasting / Technology / Fountain code / Asynchronous Layered Coding / IP multicast / Forward error correction / Multimedia Broadcast Multicast Service / Error detection and correction / Multicast / Low-density parity-check code

Large Scale Content Distribution Protocols Christoph NEUMANN Vincent ROCA Rod WALSH

DocID: 1msaD - View Document

Coding theory / Packet loss / Erasure code / Transmission Control Protocol / Forward error correction / Fountain code / Communications protocol / Error detection and correction / Channel / Retransmission / Luby transform code

1 Accessing Multiple Mirror Sites in Parallel: Using Tornado Codes to Speed Up Downloads John W. Byers Dept. of Computer Science

DocID: 1mcco - View Document

Mathematics / Fountain code / Luby transform code / Erasure code / Reed–Solomon error correction / Systematic code / Symbol / Soliton distribution / Code / Coding theory / Information theory / Discrete mathematics

LT Codes Michael Luby Digital Fountain, Inc. Abstract

DocID: 1gozW - View Document

Mathematics / Raptor code / Fountain code / Luby transform code / Ripple / Forward error correction / Coding theory / Information theory / Discrete mathematics

www.ietdl.org Published in IET Communications Received on 29th September 2013 Revised on 16th December 2013 Accepted on 26th January 2014 doi: iet-com

DocID: 1gglw - View Document