<--- Back to Details
First PageDocument Content
Fermi–Pasta–Ulam problem / Martin David Kruskal / Equipartition theorem / Korteweg–de Vries equation / Enrico Fermi / John Pasta / Boris Chirikov / Nonlinear system / Anharmonicity / Physics / Solitons / Ergodic theory
Date: 2009-04-09 09:39:52
Fermi–Pasta–Ulam problem
Martin David Kruskal
Equipartition theorem
Korteweg–de Vries equation
Enrico Fermi
John Pasta
Boris Chirikov
Nonlinear system
Anharmonicity
Physics
Solitons
Ergodic theory

Add to Reading List

Source URL: people.maths.ox.ac.uk

Download Document from Source Website

File Size: 1,63 MB

Share Document on Facebook

Similar Documents

Korteweg-de Vries equation with a forcing term Solitary waves of the Kawahara equation Conclusion Fr´ed´eric CHARDARDa

DocID: 1o83u - View Document

Solitons / Partial differential equations / Differential equations / Stability theory / Kortewegde Vries equation / Fluid dynamics / Orbital stability / Wave / KadomtsevPetviashvili equation / BenjaminBonaMahony equation

Transverse stability issues in Hamiltonian partial differential equations Nikolay Tzvetkov (University Cergy-Pontoise) The famous Korteweg- de Vries (KdV) equation ∂t u + u∂x u + ∂x3 u = 0 is a one dimensional asym

DocID: 1mZ8f - View Document

Lattice supersymmetric Korteweg de Vries equation, Bilinear formalism, solutions and reductions to super-QRT mappings Adrian Stefan Carstea Geometry and Physics group (GAP), DFT-IFIN, Bucharest

DocID: 1mWJk - View Document

Convergence of a semi-discrete scheme for the stochastic Korteweg–de Vries equation. Arnaud Debussche∗ Jacques Printems†

DocID: 1mtJn - View Document

Control and Stabilization of the Korteweg-de Vries Equation on a Periodic Domain Camille Laurent Laboratoire de Math´ematiques Universit´e Paris-Sud Bˆ

DocID: 1lss0 - View Document