<--- Back to Details
First PageDocument Content
Algebra / Mathematics / Interpolation / Polynomial interpolation / Polynomials / Permutation / Jordan normal form / Pad approximant / Random self-reducibility / Pattern language
Date: 2017-06-27 04:39:37
Algebra
Mathematics
Interpolation
Polynomial interpolation
Polynomials
Permutation
Jordan normal form
Pad approximant
Random self-reducibility
Pattern language

Computing minimal interpolation bases

Add to Reading List

Source URL: perso.ens-lyon.fr

Download Document from Source Website

File Size: 1.004,24 KB

Share Document on Facebook

Similar Documents

Continued fractions / Numerical analysis / Rational functions / Pad table / Pad approximant

Fraction-free Computation of Simultaneous Padé Approximants George Labahn Symbolic Computation Group Cheriton School of Computer Science University of Waterloo, Canada

DocID: 1qql1 - View Document

Continued fractions / Elementary mathematics / Complex analysis / Mathematical analysis / E / Pad approximant / Exponential function / Square root / Taylor series / Sine / Rational function / Rational number

Rational Approximations Package for REDUCE Lisa Temme Wolfram Koepf e-mail: August 1995 : ZIB Berlin

DocID: 1oTTJ - View Document

Physical optics / Computational science / Quantum mechanics / Beam propagation method / Optics / Helmholtz equation / Evanescent wave / Wave equation / Propagator / Physics / Algebra / Electrodynamics

Beam Propagation Method Using a [(p − 1)/p] Pad´ e Approximant of the Propagator Ya Yan Lu and Pui Lin Ho Department of Mathematics, City University of Hong Kong Kowloon, Hong Kong

DocID: Y42v - View Document